These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28628618)

  • 1. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.
    Gibbs DL; Shmulevich I
    PLoS Comput Biol; 2017 Jun; 13(6):e1005591. PubMed ID: 28628618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle.
    Chen HC; Lee HC; Lin TY; Li WH; Chen BS
    Bioinformatics; 2004 Aug; 20(12):1914-27. PubMed ID: 15044243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G; Rougemont J; Naef F
    Bioinformatics; 2006 Oct; 22(20):2539-46. PubMed ID: 16895923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY; Ganguli S; Tang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051907. PubMed ID: 17677098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae.
    Cokus S; Rose S; Haynor D; Grønbech-Jensen N; Pellegrini M
    BMC Bioinformatics; 2006 Aug; 7():381. PubMed ID: 16914048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle.
    Bushel PR; Heard NA; Gutman R; Liu L; Peddada SD; Pyne S
    BMC Syst Biol; 2009 Sep; 3():93. PubMed ID: 19758441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. msiDBN: a method of identifying critical proteins in dynamic PPI networks.
    Zhang Y; Du N; Li K; Feng J; Jia K; Zhang A
    Biomed Res Int; 2014; 2014():138410. PubMed ID: 24800204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representing perturbed dynamics in biological network models.
    Stoll G; Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011917. PubMed ID: 17677504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.
    Yoshida R; Imoto S; Higuchi T
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():289-98. PubMed ID: 16447986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J
    J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down network analysis to drive bottom-up modeling of physiological processes.
    Poirel CL; Rodrigues RR; Chen KC; Tyson JJ; Murali TM
    J Comput Biol; 2013 May; 20(5):409-18. PubMed ID: 23641868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.
    Mistry D; Wise RP; Dickerson JA
    PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paths Through the Yeast Regulatory Network in Different Physiological States.
    Lesk AM; Konagurthu AS
    J Mol Biol; 2021 Oct; 433(21):167181. PubMed ID: 34339724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell size at S phase initiation: an emergent property of the G1/S network.
    Barberis M; Klipp E; Vanoni M; Alberghina L
    PLoS Comput Biol; 2007 Apr; 3(4):e64. PubMed ID: 17432928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae.
    Kelliher CM; Foster MW; Motta FC; Deckard A; Soderblom EJ; Moseley MA; Haase SB
    Mol Biol Cell; 2018 Nov; 29(22):2644-2655. PubMed ID: 30207828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene duplication and hierarchical modularity in intracellular interaction networks.
    Hallinan J
    Biosystems; 2004; 74(1-3):51-62. PubMed ID: 15125992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.