These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28628618)

  • 21. Identifying vital nodes for yeast network by dynamic network entropy.
    Liu J; Wang Y; Men J; Wang H
    BMC Bioinformatics; 2024 Jul; 25(1):242. PubMed ID: 39026169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE; Mjolsness E; Wold BJ
    PLoS Comput Biol; 2006 Dec; 2(12):e169. PubMed ID: 17194216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network.
    Alberghina L; Mavelli G; Drovandi G; Palumbo P; Pessina S; Tripodi F; Coccetti P; Vanoni M
    Biotechnol Adv; 2012; 30(1):52-72. PubMed ID: 21821114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic survey of centrality measures for protein-protein interaction networks.
    Ashtiani M; Salehzadeh-Yazdi A; Razaghi-Moghadam Z; Hennig H; Wolkenhauer O; Mirzaie M; Jafari M
    BMC Syst Biol; 2018 Jul; 12(1):80. PubMed ID: 30064421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inferring network interactions within a cell.
    Carter GW
    Brief Bioinform; 2005 Dec; 6(4):380-9. PubMed ID: 16420736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic analysis of regulatory network dynamics reveals large topological changes.
    Luscombe NM; Babu MM; Yu H; Snyder M; Teichmann SA; Gerstein M
    Nature; 2004 Sep; 431(7006):308-12. PubMed ID: 15372033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The FEAR network.
    Rock JM; Amon A
    Curr Biol; 2009 Dec; 19(23):R1063-8. PubMed ID: 20064401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic complex formation during the yeast cell cycle.
    de Lichtenberg U; Jensen LJ; Brunak S; Bork P
    Science; 2005 Feb; 307(5710):724-7. PubMed ID: 15692050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Funneled landscape leads to robustness of cell networks: yeast cell cycle.
    Wang J; Huang B; Xia X; Sun Z
    PLoS Comput Biol; 2006 Nov; 2(11):e147. PubMed ID: 17112311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic algorithm for inferring qualitative models of gene regulatory networks.
    Yun Z; Keong KC
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():353-62. PubMed ID: 16448028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis.
    Futschik ME; Herzel H
    Bioinformatics; 2008 Apr; 24(8):1063-9. PubMed ID: 18310054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of Mitotic Exit in Saccharomyces cerevisiae.
    Baro B; Queralt E; Monje-Casas F
    Methods Mol Biol; 2017; 1505():3-17. PubMed ID: 27826852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network.
    Leech CM; Flynn MJ; Arsenault HE; Ou J; Liu H; Zhu LJ; Benanti JA
    PLoS Genet; 2020 Apr; 16(4):e1008600. PubMed ID: 32343701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
    Ostrow AZ; Nellimoottil T; Knott SR; Fox CA; Tavaré S; Aparicio OM
    PLoS One; 2014; 9(2):e87647. PubMed ID: 24504085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How to identify essential genes from molecular networks?
    del Rio G; Koschützki D; Coello G
    BMC Syst Biol; 2009 Oct; 3():102. PubMed ID: 19822021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical modeling of complex regulatory networks.
    Stelling J; Gilles ED
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):172-9. PubMed ID: 15473069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.