BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28628726)

  • 1. Coinage Metal Superatomic Cores: Insights into Their Intrinsic Stability and Optical Properties from Relativistic DFT Calculations.
    Gam F; Paez-Hernandez D; Arratia-Perez R; Liu CW; Kahlal S; Saillard JY; Muñoz-Castro A
    Chemistry; 2017 Aug; 23(47):11330-11337. PubMed ID: 28628726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric structure, electronic structure and optical absorption properties of one-dimensional thiolate-protected gold clusters containing a quasi-face-centered-cubic (quasi-fcc) Au-core: a density-functional theoretical study.
    Ma Z; Wang P; Pei Y
    Nanoscale; 2016 Sep; 8(38):17044-17054. PubMed ID: 27714129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of transition metals in coinage metal nanoclusters for the remediation of toxic dyes in aqueous systems.
    Sharma P; Ganguly M; Sahu M
    RSC Adv; 2024 Apr; 14(16):11411-11428. PubMed ID: 38595712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
    Gourlaouen C; Piquemal JP; Saue T; Parisel O
    J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure and optical properties of the intrinsically chiral 16-electron superatom complex [Au20(PP3)4](4+).
    Knoppe S; Lehtovaara L; Häkkinen H
    J Phys Chem A; 2014 Jun; 118(23):4214-21. PubMed ID: 24856613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evolution of atomically precise thiolated bimetallic [Au(12+n)Cu₃₂(SR)(30+n)]⁴⁻ (n = 0, 2, 4, 6) nanoclusters.
    Yang H; Wang Y; Yan J; Chen X; Zhang X; Häkkinen H; Zheng N
    J Am Chem Soc; 2014 May; 136(20):7197-200. PubMed ID: 24796211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters: DFT/TDDFT studies.
    Liao MS; Bonifassi P; Leszczynski J; Ray PC; Huang MJ; Watts JD
    J Phys Chem A; 2010 Dec; 114(48):12701-8. PubMed ID: 21062075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrooxidation-induced structural changes of gold di-superatomic molecules: Au23vs. Au25.
    Matsuo S; Yamazoe S; Goh JQ; Akola J; Tsukuda T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4822-7. PubMed ID: 26806844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Crystal Sub-Nanometer Sized Cu
    Gao X; He S; Zhang C; Du C; Chen X; Xing W; Chen S; Clayborne A; Chen W
    Adv Sci (Weinh); 2016 Dec; 3(12):1600126. PubMed ID: 27981004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From the Superatom Model to a Diverse Array of Super-Elements: A Systematic Study of Dopant Influence on the Electronic Structure of Thiolate-Protected Gold Clusters.
    Schacht J; Gaston N
    Chemphyschem; 2016 Oct; 17(20):3237-3244. PubMed ID: 27539555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper Induces a Core Plasmon in Intermetallic Au(144,145)-xCux(SR)60 Nanoclusters.
    Malola S; Hartmann MJ; Häkkinen H
    J Phys Chem Lett; 2015 Feb; 6(3):515-20. PubMed ID: 26261973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydride-doped coinage metal superatoms and their catalytic applications.
    Chiu TH; Liao JH; Silalahi RPB; Pillay MN; Liu CW
    Nanoscale Horiz; 2024 Apr; 9(5):675-692. PubMed ID: 38507282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From superatomic Au25(SR)18(-) to superatomic M@Au24(SR)18(q) core-shell clusters.
    Jiang DE; Dai S
    Inorg Chem; 2009 Apr; 48(7):2720-2. PubMed ID: 19236016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of coinage metal clusters with chalcogen dihydrides.
    Pakiari AH; Jamshidi Z
    J Phys Chem A; 2008 Aug; 112(34):7969-75. PubMed ID: 18683913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and molecular structure of gold triarylcorroles.
    Thomas KE; Alemayehu AB; Conradie J; Beavers C; Ghosh A
    Inorg Chem; 2011 Dec; 50(24):12844-51. PubMed ID: 22111600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monomeric copper(I), silver(I), and gold(I) alkyne complexes and the coinage metal family group trends.
    Dias HV; Flores JA; Wu J; Kroll P
    J Am Chem Soc; 2009 Aug; 131(31):11249-55. PubMed ID: 19610646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic Au2 Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species.
    Kang X; Wang S; Song Y; Jin S; Sun G; Yu H; Zhu M
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3611-4. PubMed ID: 26890334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and bonding of isoleptic coinage metal (Cu, Ag, Au) dimethylaminonitrenes in the gas phase.
    Fedorov A; Couzijn EP; Nagornova NS; Boyarkin OV; Rizzo TR; Chen P
    J Am Chem Soc; 2010 Oct; 132(39):13789-98. PubMed ID: 20843043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.