BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28628886)

  • 1. Estimation of the production of medical Ac-225 on thorium material via proton accelerator.
    Artun O
    Appl Radiat Isot; 2017 Sep; 127():166-172. PubMed ID: 28628886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large scale accelerator production of
    Griswold JR; Medvedev DG; Engle JW; Copping R; Fitzsimmons JM; Radchenko V; Cooley JC; Fassbender ME; Denton DL; Murphy KE; Owens AC; Birnbaum ER; John KD; Nortier FM; Stracener DW; Heilbronn LH; Mausner LF; Mirzadeh S
    Appl Radiat Isot; 2016 Dec; 118():366-374. PubMed ID: 27776333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining Processing Times for Accelerator Produced
    Fitzsimmons J; Griswold J; Medvedev D; Cutler CS; Mausner L
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30897722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pairing of thorium with selected primary target materials in tandem configurations: Co-production of
    Steyn GF; Motetshwane MA; Szelecsényi F; Brümmer JW
    Appl Radiat Isot; 2021 Feb; 168():109514. PubMed ID: 33334657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.
    Weidner JW; Mashnik SG; John KD; Ballard B; Birnbaum ER; Bitteker LJ; Couture A; Fassbender ME; Goff GS; Gritzo R; Hemez FM; Runde W; Ullmann JL; Wolfsberg LE; Nortier FM
    Appl Radiat Isot; 2012 Nov; 70(11):2590-5. PubMed ID: 22944532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.
    Weidner JW; Mashnik SG; John KD; Hemez F; Ballard B; Bach H; Birnbaum ER; Bitteker LJ; Couture A; Dry D; Fassbender ME; Gulley MS; Jackman KR; Ullmann JL; Wolfsberg LE; Nortier FM
    Appl Radiat Isot; 2012 Nov; 70(11):2602-7. PubMed ID: 22940414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatographic separation of the theranostic radionuclide
    Mastren T; Radchenko V; Engle JW; Weidner JW; Owens A; Wyant LE; Copping R; Brugh M; Nortier FM; Birnbaum ER; John KD; Fassbender ME
    Anal Chim Acta; 2018 Jan; 998():75-82. PubMed ID: 29153089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective separation of radium and actinium from bulk thorium target material on strong acid cation exchange resin from sulfate media.
    McAlister DR; Horwitz EP
    Appl Radiat Isot; 2018 Oct; 140():18-23. PubMed ID: 29936271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes.
    Radchenko V; Engle JW; Wilson JJ; Maassen JR; Nortier FM; Taylor WA; Birnbaum ER; Hudston LA; John KD; Fassbender ME
    J Chromatogr A; 2015 Feb; 1380():55-63. PubMed ID: 25596759
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Robertson AKH; McNeil BL; Yang H; Gendron D; Perron R; Radchenko V; Zeisler S; Causey P; Schaffer P
    Inorg Chem; 2020 Sep; 59(17):12156-12165. PubMed ID: 32677829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.
    Webster WD; Parks GT; Titov D; Beasley P
    Nucl Med Biol; 2014 May; 41 Suppl():e7-15. PubMed ID: 24434013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.
    Duchemin C; Guertin A; Haddad F; Michel N; Métivier V
    Phys Med Biol; 2015 Feb; 60(3):931-46. PubMed ID: 25574934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating
    Rahmani M; Martinez DM
    Sci Rep; 2023 Sep; 13(1):15848. PubMed ID: 37740000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.
    Hansen DC; Seco J; Sørensen TS; Petersen JB; Wildberger JE; Verhaegen F; Landry G
    Acta Oncol; 2015; 54(9):1638-42. PubMed ID: 26219959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of productions of medical
    Artun O
    Appl Radiat Isot; 2019 Feb; 144():64-79. PubMed ID: 30530248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigative for no-carrier-added
    Sharifian M; Sadeghi M; Alirezapour B; Mohseni M
    Appl Radiat Isot; 2017 Apr; 122():136-140. PubMed ID: 28160716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and experimental data of zirconium-89 production yield.
    Sharifian M; Sadeghi M; Alirezapour B; Yarmohammadi M; Ardaneh K
    Appl Radiat Isot; 2017 Dec; 130():206-210. PubMed ID: 28992565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (232)Th(d,4n)(230)Pa cross-section measurements at ARRONAX facility for the production of (230)U.
    Duchemin C; Guertin A; Haddad F; Michel N; Métivier V
    Nucl Med Biol; 2014 May; 41 Suppl():e19-22. PubMed ID: 24485989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of 103Ru from a proton irradiated thorium matrix: A potential source of Auger therapy radionuclide 103mRh.
    Mastren T; Radchenko V; Hopkins PD; Engle JW; Weidner JW; Copping R; Brugh M; Nortier FM; Birnbaum ER; John KD; Fassbender ME
    PLoS One; 2017; 12(12):e0190308. PubMed ID: 29272318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.