BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28629058)

  • 1. Photo-induced surface grafting of phosphorylcholine containing copolymers onto mesoporous silica nanoparticles for controlled drug delivery.
    Mao L; Liu M; Huang L; Xu D; Wan Q; Zeng G; Dai Y; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():596-604. PubMed ID: 28629058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery.
    Huang L; Wu J; Liu M; Mao L; Huang H; Wan Q; Dai Y; Wen Y; Zhang X; Wei Y
    J Colloid Interface Sci; 2017 Dec; 508():396-404. PubMed ID: 28843929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface grafting of Eu
    Zeng G; Liu M; Jiang R; Heng C; Huang Q; Mao L; Hui J; Deng F; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():420-426. PubMed ID: 28532048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.
    Huang L; Liu M; Mao L; Huang Q; Huang H; Wan Q; Tian J; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():57-65. PubMed ID: 28888011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment.
    Heng C; Zhou X; Zheng X; Liu M; Wen Y; Huang H; Fan D; Hui J; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():556-563. PubMed ID: 30033287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Mesoporous Silica Nanoparticles Grafted with 2-(tert-butylamino)ethyl Methacrylate-b-poly(ethylene Glycol) Methyl Ether Methacrylate Diblock Brushes as Drug Nanocarrier.
    Alswieleh AM; Beagan AM; Alsheheri BM; Alotaibi KM; Alharthi MD; Almeataq MS
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31947738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization.
    Huang L; Yang S; Chen J; Tian J; Huang Q; Huang H; Wen Y; Deng F; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():270-278. PubMed ID: 30423709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile graft of poly(2-methacryloyloxyethyl phosphorylcholine) onto Fe(3) O(4) nanoparticles by ATRP: synthesis, properties, and biocompatibility.
    Sun XY; Yu SS; Wan JQ; Chen KZ
    J Biomed Mater Res A; 2013 Feb; 101(2):607-12. PubMed ID: 22887925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.
    Wang K; Fan X; Zhang X; Zhang X; Chen Y; Wei Y
    Colloids Surf B Biointerfaces; 2016 Aug; 144():188-195. PubMed ID: 27088188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy.
    Pan G; Jia TT; Huang QX; Qiu YY; Xu J; Yin PH; Liu T
    Colloids Surf B Biointerfaces; 2017 Nov; 159():375-385. PubMed ID: 28818782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization.
    Feng W; Zhu S; Ishihara K; Brash JL
    Langmuir; 2005 Jun; 21(13):5980-7. PubMed ID: 15952850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.
    Goda T; Konno T; Takai M; Moro T; Ishihara K
    Biomaterials; 2006 Oct; 27(30):5151-60. PubMed ID: 16797692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths.
    Matsuda Y; Kobayashi M; Annaka M; Ishihara K; Takahara A
    Langmuir; 2008 Aug; 24(16):8772-8. PubMed ID: 18627181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP.
    Huang H; Liu M; Xu D; Mao L; Huang Q; Deng F; Tian J; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110157. PubMed ID: 31753361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel strategy for fabrication of fluorescent hydroxyapatite based polymer composites through the combination of surface ligand exchange and self-catalyzed ATRP.
    Chen J; Liu M; Huang Q; Jiang R; Huang H; Deng F; Wen Y; Tian J; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():518-525. PubMed ID: 30184777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of hetero-polymer functionalized nanocarriers by combining surface-initiated ATRP and RAFT polymerization.
    Huang X; Hauptmann N; Appelhans D; Formanek P; Frank S; Kaskel S; Temme A; Voit B
    Small; 2012 Dec; 8(23):3579-83. PubMed ID: 22911545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect on corrosion resistance of Phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA).
    Barthélémy B; Maheux S; Devillers S; Kanoufi F; Combellas C; Delhalle J; Mekhalif Z
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10060-71. PubMed ID: 24915233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility.
    Yuan B; Chen Q; Ding WQ; Liu PS; Wu SS; Lin SC; Shen J; Gai Y
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4031-9. PubMed ID: 22856677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine).
    Kyomoto M; Iwasaki Y; Moro T; Konno T; Miyaji F; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K
    Biomaterials; 2007 Jul; 28(20):3121-30. PubMed ID: 17416412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.