These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
611 related articles for article (PubMed ID: 28629081)
1. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO Johari N; Madaah Hosseini HR; Samadikuchaksaraei A Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081 [TBL] [Abstract][Full Text] [Related]
2. Novel fluoridated silk fibroin/ TiO Johari N; Madaah Hosseini HR; Samadikuchaksaraei A Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():265-276. PubMed ID: 29025657 [TBL] [Abstract][Full Text] [Related]
3. A novel pathway to produce biodegradable and bioactive PLGA/TiO Pelaseyed SS; Madaah Hosseini HR; Samadikuchaksaraei A J Biomed Mater Res A; 2020 Jun; 108(6):1390-1407. PubMed ID: 32108983 [TBL] [Abstract][Full Text] [Related]
4. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
5. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
6. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]
7. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Nourmohammadi J; Roshanfar F; Farokhi M; Haghbin Nazarpak M Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():951-958. PubMed ID: 28482612 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
10. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S; Yekta H; Ahmadi S; Alamara K Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Ghorbanian L; Emadi R; Razavi SM; Shin H; Teimouri A Int J Biol Macromol; 2013 Jul; 58():275-80. PubMed ID: 23603246 [TBL] [Abstract][Full Text] [Related]
13. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology. Teimouri A; Ebrahimi R; Emadi R; Beni BH; Chermahini AN Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925 [TBL] [Abstract][Full Text] [Related]
16. [Preparation and characterization of oriented scaffolds derived from cartilage extracellular matrix and silk fibroin]. Binhong T; Yanhong Z; Lianyong W; Qiang Y; Hongfa L; Yunjie L Hua Xi Kou Qiang Yi Xue Za Zhi; 2018 Feb; 36(1):17-22. PubMed ID: 29594990 [TBL] [Abstract][Full Text] [Related]
17. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]
18. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
19. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Zhang H; Liu X; Yang M; Zhu L Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733 [TBL] [Abstract][Full Text] [Related]
20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]