BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

907 related articles for article (PubMed ID: 28629322)

  • 1. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing.
    Liu N; Li M; Hu X; Ma Q; Mu Y; Tan Z; Xia Q; Zhang G; Nian H
    BMC Genomics; 2017 Jun; 18(1):466. PubMed ID: 28629322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing.
    Zhang Y; Li W; Lin Y; Zhang L; Wang C; Xu R
    BMC Genomics; 2018 Aug; 19(1):641. PubMed ID: 30157757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map.
    Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations.
    Wang L; Cheng Y; Ma Q; Mu Y; Huang Z; Xia Q; Zhang G; Nian H
    BMC Genomics; 2019 Apr; 20(1):260. PubMed ID: 30940069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (Sesamum indicum L.) based on RAD-Seq techonology.
    Wu K; Liu H; Yang M; Tao Y; Ma H; Wu W; Zuo Y; Zhao Y
    BMC Plant Biol; 2014 Oct; 14():274. PubMed ID: 25300176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.).
    Zhang K; Kuraparthy V; Fang H; Zhu L; Sood S; Jones DC
    BMC Genomics; 2019 Nov; 20(1):889. PubMed ID: 31771502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTL mapping for soybean (Glycine max L.) leaf chlorophyll-content traits in a genotyped RIL population by using RAD-seq based high-density linkage map.
    Wang L; Conteh B; Fang L; Xia Q; Nian H
    BMC Genomics; 2020 Oct; 21(1):739. PubMed ID: 33096992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population.
    Fan L; Wang L; Wang X; Zhang H; Zhu Y; Guo J; Gao W; Geng H; Chen Q; Qu Y
    BMC Genomics; 2018 Jun; 19(1):489. PubMed ID: 29940861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing.
    Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P
    BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.
    Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X
    BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.
    Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y
    J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq.
    Peng Y; Hu Y; Mao B; Xiang H; Shao Y; Pan Y; Sheng X; Li Y; Ni X; Xia Y; Zhang G; Yuan L; Quan Z; Zhao B
    Mol Genet Genomics; 2016 Feb; 291(1):297-307. PubMed ID: 26334612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing.
    Han J; Han D; Guo Y; Yan H; Wei Z; Tian Y; Qiu L
    Theor Appl Genet; 2019 Aug; 132(8):2253-2272. PubMed ID: 31161230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.).
    Marathi B; Guleria S; Mohapatra T; Parsad R; Mariappan N; Kurungara VK; Atwal SS; Prabhu KV; Singh NK; Singh AK
    BMC Plant Biol; 2012 Aug; 12():137. PubMed ID: 22876968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density linkage map construction and mapping QTL for yield and yield components in autotetraploid alfalfa using RAD-seq.
    Zhang F; Kang J; Long R; Yu LX; Wang Z; Zhao Z; Zhang T; Yang Q
    BMC Plant Biol; 2019 Apr; 19(1):165. PubMed ID: 31029106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L.
    Jia X; Pang C; Wei H; Wang H; Ma Q; Yang J; Cheng S; Su J; Fan S; Song M; Wusiman N; Yu S
    BMC Genomics; 2016 Nov; 17(1):909. PubMed ID: 27835938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.
    Patil G; Vuong TD; Kale S; Valliyodan B; Deshmukh R; Zhu C; Wu X; Bai Y; Yungbluth D; Lu F; Kumpatla S; Shannon JG; Varshney RK; Nguyen HT
    Plant Biotechnol J; 2018 Nov; 16(11):1939-1953. PubMed ID: 29618164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution Mapping in Two RIL Populations Refines Major "QTL Hotspot" Regions for Seed Size and Shape in Soybean (
    Hina A; Cao Y; Song S; Li S; Sharmin RA; Elattar MA; Bhat JA; Zhao T
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL mapping for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing.
    Wang X; Cheng Y; Yang C; Yang C; Mu Y; Xia Q; Ma Q
    PLoS One; 2019; 14(10):e0223674. PubMed ID: 31661499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.