BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28629355)

  • 1. Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.
    Azuma Y; Onami S
    BMC Bioinformatics; 2017 Jun; 18(1):307. PubMed ID: 28629355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo.
    Cao J; Wong MK; Zhao Z; Yan H
    BMC Bioinformatics; 2019 Apr; 20(1):176. PubMed ID: 30961566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. spheresDT/Mpacts-PiCS: cell tracking and shape retrieval in membrane-labeled embryos.
    Thiels W; Smeets B; Cuvelier M; Caroti F; Jelier R
    Bioinformatics; 2021 Dec; 37(24):4851-4856. PubMed ID: 34329378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated lineage and expression profiling in live Caenorhabditis elegans embryos.
    Murray JI; Bao Z
    Cold Spring Harb Protoc; 2012 Aug; 2012(8):. PubMed ID: 22854571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking.
    Hamahashi S; Onami S; Kitano H
    BMC Bioinformatics; 2005 May; 6():125. PubMed ID: 15910690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis.
    Zanella C; Campana M; Rizzi B; Melani C; Sanguinetti G; Bourgine P; Mikula K; Peyrieras N; Sarti A
    IEEE Trans Image Process; 2010 Mar; 19(3):770-81. PubMed ID: 19955038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic identification of Caenorhabditis elegans in population images by shape energy features.
    Ochoa D; Gautama S; Philips W
    J Microsc; 2010 May; 238(2):173-84. PubMed ID: 20529064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking epithelial cell junctions in C. elegans embryogenesis with active contours guided by SIFT flow.
    Kang S; Lee CY; Gonçalves M; Chisholm AD; Cosman PC
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1020-33. PubMed ID: 24771564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caenorhabditis elegans segmentation using texture-based models for motility phenotyping.
    Greenblum A; Sznitman R; Fua P; Arratia PE; Sznitman J
    IEEE Trans Biomed Eng; 2014 Aug; 61(8):2278-89. PubMed ID: 25051545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree.
    Murray JI; Bao Z; Boyle TJ; Waterston RH
    Nat Protoc; 2006; 1(3):1468-76. PubMed ID: 17406437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation and recognition of C. elegans whole-body cells.
    Li Y; Lai C; Wang M; Wu J; Li Y; Peng H; Qu L
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38775410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Embryonic Image Segmentation and Registration Based on Shape Index and Ellipsoid-Fitting Method.
    Yang S; Han X; Chen Y
    J Comput Biol; 2019 Feb; 26(2):128-142. PubMed ID: 30526025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation and classification of two-channel C. elegans nucleus-labeled fluorescence images.
    Zhao M; An J; Li H; Zhang J; Li ST; Li XM; Dong MQ; Mao H; Tao L
    BMC Bioinformatics; 2017 Sep; 18(1):412. PubMed ID: 28915791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation.
    Cao J; Guan G; Ho VWS; Wong MK; Chan LY; Tang C; Zhao Z; Yan H
    Nat Commun; 2020 Dec; 11(1):6254. PubMed ID: 33288755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mounting Caenorhabditis elegans embryos for live imaging of embryogenesis.
    Bao Z; Murray JI
    Cold Spring Harb Protoc; 2011 Sep; 2011(9):. PubMed ID: 21880814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphologically constrained and data informed cell segmentation of budding yeast.
    Bakker E; Swain PS; Crane MM
    Bioinformatics; 2018 Jan; 34(1):88-96. PubMed ID: 28968663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Caenorhabditis elegans embryogenesis by third-harmonic generation microscopy.
    Tserevelakis GJ; Filippidis G; Krmpot AJ; Vlachos M; Fotakis C; Tavernarakis N
    Micron; 2010 Jul; 41(5):444-7. PubMed ID: 20207548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.
    Hosseini MP; Nazem-Zadeh MR; Pompili D; Jafari-Khouzani K; Elisevich K; Soltanian-Zadeh H
    Med Phys; 2016 Jan; 43(1):538. PubMed ID: 26745947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement.
    Insley P; Shaham S
    PLoS One; 2018; 13(3):e0194861. PubMed ID: 29590193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.