These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28629707)

  • 1. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.
    Wang Y; Tang Y; Shao Y
    J Mol Graph Model; 2017 Sep; 76():521-534. PubMed ID: 28629707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde.
    Pinthong P; Praserthdam P; Jongsomjit B
    J Oleo Sci; 2019 Jan; 68(1):95-102. PubMed ID: 30542011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.
    Witzke ME; Dietrich PJ; Ibrahim MY; Al-Bardan K; Triezenberg MD; Flaherty DW
    Chem Commun (Camb); 2017 Jan; 53(3):597-600. PubMed ID: 27981330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.
    Yu Y; Li Y; Zhang X; Deng H; He H; Li Y
    Environ Sci Technol; 2015 Jan; 49(1):481-8. PubMed ID: 25485626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane.
    Duman S; Metin O; Ozkar S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4954-61. PubMed ID: 23901516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility.
    Zhang X; Kam L; Trerise R; Williams TJ
    Acc Chem Res; 2017 Jan; 50(1):86-95. PubMed ID: 28032510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.
    Sushkevich VL; Ivanova II; Ordomsky VV; Taarning E
    ChemSusChem; 2014 Sep; 7(9):2527-36. PubMed ID: 25123990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.
    He N; Li ZH
    Phys Chem Chem Phys; 2016 Apr; 18(15):10005-17. PubMed ID: 27005983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pt NPs immobilized on core-shell magnetite microparticles: novel and highly efficient catalysts for the selective aerobic oxidation of ethanol and glycerol in water.
    Long Y; Liang K; Niu J; Yuan B; Ma J
    Dalton Trans; 2015 May; 44(18):8660-8. PubMed ID: 25854708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.
    Hu Y; Zhan N; Dou C; Huang H; Han Y; Yu D; Hu Y
    Biotechnol J; 2010 Nov; 5(11):1186-91. PubMed ID: 21058319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Brønsted-acidic ionic liquids.
    Tong X; Li Y
    ChemSusChem; 2010 Mar; 3(3):350-5. PubMed ID: 20082406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.
    Sponholz P; Mellmann D; Cordes C; Alsabeh PG; Li B; Li Y; Nielsen M; Junge H; Dixneuf P; Beller M
    ChemSusChem; 2014 Sep; 7(9):2419-22. PubMed ID: 25088665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.
    Sun J; Zhu K; Gao F; Wang C; Liu J; Peden CH; Wang Y
    J Am Chem Soc; 2011 Jul; 133(29):11096-9. PubMed ID: 21682296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.
    Lilić A; Bennici S; Devaux JF; Dubois JL; Auroux A
    ChemSusChem; 2017 May; 10(9):1916-1930. PubMed ID: 28235163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts.
    Sun Q; Wang N; Yu J
    Adv Mater; 2021 Dec; 33(51):e2104442. PubMed ID: 34611941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the solvent effects on ethanol oxidation on Ir(100).
    Wu R; Wang L
    Phys Chem Chem Phys; 2023 Jan; 25(3):2190-2202. PubMed ID: 36594349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.