BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28629902)

  • 21. Corneo-scleral limbus demarcation from 3D height data.
    Consejo A; Iskander DR
    Cont Lens Anterior Eye; 2016 Dec; 39(6):450-457. PubMed ID: 27212670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography.
    Yang Y; Hong J; Deng SX; Xu J
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5032-8. PubMed ID: 25052994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scleral topography analysed by optical coherence tomography.
    Bandlitz S; Bäumer J; Conrad U; Wolffsohn J
    Cont Lens Anterior Eye; 2017 Aug; 40(4):242-247. PubMed ID: 28495356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping of Corneal Layer Thicknesses With Polarization-Sensitive Optical Coherence Tomography Using a Conical Scan Pattern.
    Beer F; Wartak A; Pircher N; Holzer S; Lammer J; Schmidinger G; Baumann B; Pircher M; Hitzenberger CK
    Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5579-5588. PubMed ID: 30481276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertical and horizontal corneal epithelial thickness profile using ultra-high resolution and long scan depth optical coherence tomography.
    Wu S; Tao A; Jiang H; Xu Z; Perez V; Wang J
    PLoS One; 2014; 9(5):e97962. PubMed ID: 24844566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices.
    Ge L; Shen M; Tao A; Wang J; Dou G; Lu F
    Eye Contact Lens; 2012 May; 38(3):150-7. PubMed ID: 22415151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of the limbus-insertion distance in adult strabismus patients with anterior segment optical coherence tomography.
    Liu X; Wang F; Xiao Y; Ye X; Hou L
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8370-3. PubMed ID: 21948556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vivo Identification of the Posttrabecular Aqueous Outflow Pathway Using Swept-Source Optical Coherence Tomography.
    Uji A; Muraoka Y; Yoshimura N
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4162-9. PubMed ID: 27537266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size does matter: what is the corneo-limbal diameter?
    Bergmanson JP; Martinez JG
    Clin Exp Optom; 2017 Sep; 100(5):522-528. PubMed ID: 28868754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative evaluation of corneal and limbal epithelial thickness in brachycephalic dogs with and without corneal diseases using spectral domain optical coherence tomography.
    Jeong Y; Kang S; Seo K
    Vet Ophthalmol; 2024 Jan; 27(1):30-39. PubMed ID: 37118910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Tono-Pen AVIA intraocular pressure measurements performed at limbus with central corneal Tono-Pen AVIA intraocular pressure.
    Sharma R; Majumdar S; Sobti A; Arora T; Agarwal T; Dada T
    Cornea; 2013 Jul; 32(7):943-6. PubMed ID: 23328700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agreement between intraoperative measurements and optical coherence tomography of the limbus-insertion distance of the extraocular muscles.
    de-Pablo-Gómez-de-Liaño L; Fernández-Vigo JI; Ventura-Abreu N; Morales-Fernández L; García-Feijóo J; Gómez-de-Liaño R
    Arch Soc Esp Oftalmol; 2016 Dec; 91(12):567-572. PubMed ID: 27338623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diurnal Variations in the Morphology of Schlemm's Canal and Intraocular Pressure in Healthy Chinese: An SS-OCT Study.
    Gao K; Li F; Aung T; Zhang X
    Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5777-5782. PubMed ID: 29117278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Schlemm's canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography.
    Usui T; Tomidokoro A; Mishima K; Mataki N; Mayama C; Honda N; Amano S; Araie M
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(9):6934-9. PubMed ID: 21757587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Corneoscleral Geometry Using Fourier Transform Profilometry in the Healthy Eye.
    Piñero DP; Martínez-Abad A; Soto-Negro R; Ariza-Gracia MA; Carracedo G
    Eye Contact Lens; 2019 May; 45(3):201-207. PubMed ID: 30325762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anterior chamber width measurement by high-speed optical coherence tomography.
    Goldsmith JA; Li Y; Chalita MR; Westphal V; Patil CA; Rollins AM; Izatt JA; Huang D
    Ophthalmology; 2005 Feb; 112(2):238-44. PubMed ID: 15691557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high-resolution optical coherence tomography.
    Shousha MA; Karp CL; Perez VL; Hoffmann R; Ventura R; Chang V; Dubovy SR; Wang J
    Ophthalmology; 2011 Aug; 118(8):1531-7. PubMed ID: 21507486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses.
    Ge L; Yuan Y; Shen M; Tao A; Wang J; Lu F
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):746-55. PubMed ID: 23139281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Evaluation of the Limbus Using Anterior Segment Optical Coherence Tomography.
    Le Q; Cordova D; Xu J; Deng SX
    Transl Vis Sci Technol; 2018 Jul; 7(4):12. PubMed ID: 30112250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of corneal and limbal epithelial thickness by spectral-domain optical coherence tomography in brachycephalic and non-brachycephalic dogs.
    Jeong Y; Kang S; Ahn J; Kim S; Kim H; Park J; Seo K
    Vet Ophthalmol; 2023 Apr; 26 Suppl 1():89-97. PubMed ID: 35904513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.