These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28629902)

  • 61. In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT.
    Bizheva K; Hutchings N; Sorbara L; Moayed AA; Simpson T
    Biomed Opt Express; 2011 Jul; 2(7):1794-02. PubMed ID: 21750758
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Variations of the microstructure in human limbus by confocal microscopy in vivo].
    Zheng TY; Xu JJ; Le QH; Hong JX; Wang X
    Zhonghua Yan Ke Za Zhi; 2008 Dec; 44(12):1103-7. PubMed ID: 19187665
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anterior ocular biometry using 3-dimensional optical coherence tomography.
    Fukuda S; Kawana K; Yasuno Y; Oshika T
    Ophthalmology; 2009 May; 116(5):882-9. PubMed ID: 19410946
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.
    Patel DV; Sherwin T; McGhee CN
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2823-7. PubMed ID: 16799020
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spectral domain optical coherence tomography to assess the insertion of extraocular rectus muscles.
    De-Pablo-Gómez-de-Liaño L; Fernández-Vigo JI; Ventura-Abreu N; Morales-Fernández L; Fernández-Pérez C; García-Feijóo J; Gómez-de-Liaño R
    J AAPOS; 2016 Jun; 20(3):201-5. PubMed ID: 27166792
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spectral-domain optical coherence tomography for evaluating palisades of Vogt in ocular surface disorders with limbal involvement.
    Chen YY; Sun YC; Tsai CY; Chu HS; Wu JH; Chang HW; Chen WL
    Sci Rep; 2021 Jun; 11(1):12502. PubMed ID: 34127762
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Epithelial Thinning in Limbal Stem Cell Deficiency.
    Chan EH; Chen L; Yu F; Deng SX
    Am J Ophthalmol; 2015 Oct; 160(4):669-77.e4. PubMed ID: 26163009
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical Coherence Tomography-Assisted Limbal Dermoid Removal.
    Evans JA; Ko A; Larson SA
    J Pediatr Ophthalmol Strabismus; 2017 Oct; 54():e58-e59. PubMed ID: 28991352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultra-high resolution optical coherence tomography for differentiation of ocular surface squamous neoplasia and pterygia.
    Kieval JZ; Karp CL; Abou Shousha M; Galor A; Hoffman RA; Dubovy SR; Wang J
    Ophthalmology; 2012 Mar; 119(3):481-6. PubMed ID: 22154538
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence.
    Chang CY; Green CR; McGhee CN; Sherwin T
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5279-86. PubMed ID: 18515566
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Update on retinal vessel structure measurement with spectral-domain optical coherence tomography.
    Zhu TP; Tong YH; Zhan HJ; Ma J
    Microvasc Res; 2014 Sep; 95():7-14. PubMed ID: 24976361
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
    Alonso-Caneiro D; Vincent SJ; Collins MJ
    Cont Lens Anterior Eye; 2016 Feb; 39(1):53-61. PubMed ID: 26189941
    [TBL] [Abstract][Full Text] [Related]  

  • 73.
    Bizheva K; Tan B; MacLellan B; Hosseinaee Z; Mason E; Hileeto D; Sorbara L
    Biomed Opt Express; 2017 Sep; 8(9):4141-4151. PubMed ID: 28966853
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Limbal Basal Cell Density Decreases in Limbal Stem Cell Deficiency.
    Chan EH; Chen L; Rao JY; Yu F; Deng SX
    Am J Ophthalmol; 2015 Oct; 160(4):678-84.e4. PubMed ID: 26149968
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Healing indicators after pterygium excision by optical coherence tomography.
    Pujol P; Julio G; Barbany M; Asaad M
    Ophthalmic Physiol Opt; 2015 May; 35(3):308-14. PubMed ID: 25833130
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Wide Corneal Epithelial Mapping Using an Optical Coherence Tomography.
    Hashmani N; Hashmani S; Saad CM
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1652-1658. PubMed ID: 29625491
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Repeatability and agreement of corneal thickness measurement with Pentacam Scheimpflug photography and Visante optical coherence tomography].
    Huang JH; Ge LN; Wen DZ; Chen SH; Yu Y; Wang QM
    Zhonghua Yan Ke Za Zhi; 2013 Mar; 49(3):250-6. PubMed ID: 23866707
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inter-method agreement in retinal blood vessels diameter analysis between Dynamic Vessel Analyzer and optical coherence tomography.
    Benatti L; Corvi F; Tomasso L; Mercuri S; Querques L; Ricceri F; Bandello F; Querques G
    Graefes Arch Clin Exp Ophthalmol; 2017 Jun; 255(6):1079-1083. PubMed ID: 28190191
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vitro measurement of rabbit corneal epithelial thickness using ultrahigh resolution optical coherence tomography.
    Reiser BJ; Ignacio TS; Wang Y; Taban M; Graff JM; Sweet P; Chen Z; Chuck RS
    Vet Ophthalmol; 2005; 8(2):85-8. PubMed ID: 15762921
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anterior chamber angle imaging with swept-source optical coherence tomography: detecting the scleral spur, Schwalbe's Line, and Schlemm's Canal.
    McKee H; Ye C; Yu M; Liu S; Lam DS; Leung CK
    J Glaucoma; 2013 Aug; 22(6):468-72. PubMed ID: 23377578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.