These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28629934)

  • 21. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids.
    Lander N; Chiurillo MA
    J Eukaryot Microbiol; 2019 Nov; 66(6):981-991. PubMed ID: 31211904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
    Shen B; Brown KM; Lee TD; Sibley LD
    mBio; 2014 May; 5(3):e01114-14. PubMed ID: 24825012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis.
    Janssen BD; Chen YP; Molgora BM; Wang SE; Simoes-Barbosa A; Johnson PJ
    Sci Rep; 2018 Jan; 8(1):270. PubMed ID: 29321601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis.
    Ebrahimi S; Kalantari M; Alipour H; Azizi K; Asgari Q; Bahreini MS
    Microb Pathog; 2021 Dec; 161(Pt A):105281. PubMed ID: 34752910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania.
    Robinson KA; Beverley SM
    Mol Biochem Parasitol; 2003 May; 128(2):217-28. PubMed ID: 12742588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular tools for gene manipulation in filamentous fungi.
    Wang S; Chen H; Tang X; Zhang H; Chen W; Chen YQ
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8063-8075. PubMed ID: 28965220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generating conditional gene knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9.
    Knuepfer E; Napiorkowska M; van Ooij C; Holder AA
    Sci Rep; 2017 Jun; 7(1):3881. PubMed ID: 28634346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genetic manipulation and the study of the protozoan parasite Leishmania].
    Cortázar TM; Walker J
    Biomedica; 2004 Dec; 24(4):438-55. PubMed ID: 15678807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids.
    Dean S; Sunter J; Wheeler RJ; Hodkinson I; Gluenz E; Gull K
    Open Biol; 2015 Jan; 5(1):140197. PubMed ID: 25567099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9-Induced Disruption of Paraflagellar Rod Protein 1 and 2 Genes in Trypanosoma cruzi Reveals Their Role in Flagellar Attachment.
    Lander N; Li ZH; Niyogi S; Docampo R
    mBio; 2015 Jul; 6(4):e01012. PubMed ID: 26199333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
    Port F; Chen HM; Lee T; Bullock SL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome deletions to overcome the directed loss of gene function in
    Alpizar-Sosa EA; Kumordzi Y; Wei W; Whitfield PD; Barrett MP; Denny PW
    Front Cell Infect Microbiol; 2022; 12():988688. PubMed ID: 36211960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease.
    Gratz SJ; Cummings AM; Nguyen JN; Hamm DC; Donohue LK; Harrison MM; Wildonger J; O'Connor-Giles KM
    Genetics; 2013 Aug; 194(4):1029-35. PubMed ID: 23709638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1.
    Ishemgulova A; Hlaváčová J; Majerová K; Butenko A; Lukeš J; Votýpka J; Volf P; Yurchenko V
    PLoS One; 2018; 13(2):e0192723. PubMed ID: 29438445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing.
    Bono JM; Olesnicky EC; Matzkin LM
    Mol Ecol; 2015 Aug; 24(15):3810-22. PubMed ID: 26033315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania.
    Papadopoulou B; Dumas C
    Nucleic Acids Res; 1997 Nov; 25(21):4278-86. PubMed ID: 9336458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome editing enables reverse genetics of multicellular development in the choanoflagellate
    Booth DS; King N
    Elife; 2020 Jun; 9():. PubMed ID: 32496191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic Leishmania and the immune response to infection.
    Beattie L; Evans KJ; Kaye PM; Smith DF
    Parasite Immunol; 2008 Apr; 30(4):255-66. PubMed ID: 18266814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation.
    Duncan SM; Myburgh E; Philipon C; Brown E; Meissner M; Brewer J; Mottram JC
    Mol Microbiol; 2016 Jun; 100(6):931-44. PubMed ID: 26991545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.