BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28630104)

  • 21. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles.
    Gan P; Narusaka M; Kumakura N; Tsushima A; Takano Y; Narusaka Y; Shirasu K
    Genome Biol Evol; 2016 May; 8(5):1467-81. PubMed ID: 27189990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific.
    Diener AC; Ausubel FM
    Genetics; 2005 Sep; 171(1):305-21. PubMed ID: 15965251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica.
    Paape T; Hatakeyama M; Shimizu-Inatsugi R; Cereghetti T; Onda Y; Kenta T; Sese J; Shimizu KK
    Mol Biol Evol; 2016 Nov; 33(11):2781-2800. PubMed ID: 27413047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene-flow in a mosaic hybrid zone: is local introgression adaptive?
    Fraïsse C; Roux C; Welch JJ; Bierne N
    Genetics; 2014 Jul; 197(3):939-51. PubMed ID: 24788603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.
    Baliardini C; Meyer CL; Salis P; Saumitou-Laprade P; Verbruggen N
    Plant Physiol; 2015 Sep; 169(1):549-59. PubMed ID: 26162428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels.
    Dräger DB; Desbrosses-Fonrouge AG; Krach C; Chardonnens AN; Meyer RC; Saumitou-Laprade P; Krämer U
    Plant J; 2004 Aug; 39(3):425-39. PubMed ID: 15255871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterns of Substitution Rate Variation at Many Nuclear Loci in Two Species Trios in the Brassicaceae Partitioned with ANOVA.
    Braverman JM; Hamilton MB; Johnson BA
    J Mol Evol; 2016 Oct; 83(3-4):97-109. PubMed ID: 27592229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arabidopsis hybrid speciation processes.
    Schmickl R; Koch MA
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14192-7. PubMed ID: 21825128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata.
    Ross-Ibarra J; Wright SI; Foxe JP; Kawabe A; DeRose-Wilson L; Gos G; Charlesworth D; Gaut BS
    PLoS One; 2008 Jun; 3(6):e2411. PubMed ID: 18545707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata.
    Kawabe A; Charlesworth D
    J Mol Evol; 2007 Feb; 64(2):237-47. PubMed ID: 17160639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata.
    Roux C; Pauwels M; Ruggiero MV; Charlesworth D; Castric V; Vekemans X
    Mol Biol Evol; 2013 Feb; 30(2):435-47. PubMed ID: 23104079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L.
    Silva KJP; Brunings AM; Pereira JA; Peres NA; Folta KM; Mou Z
    BMC Plant Biol; 2017 Dec; 17(1):230. PubMed ID: 29191170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of transcriptome and epigenetic status between closely related species in the genus Arabidopsis.
    Kawanabe T; Fujimoto R; Sasaki T; Taylor JM; Dennis ES
    Gene; 2012 Sep; 506(2):301-9. PubMed ID: 22796129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives.
    Chen Q; Han Z; Jiang H; Tian D; Yang S
    J Mol Evol; 2010 Feb; 70(2):137-48. PubMed ID: 20044783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.).
    Elkot AF; Chhuneja P; Kaur S; Saluja M; Keller B; Singh K
    PLoS One; 2015; 10(6):e0128297. PubMed ID: 26066332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A recent local sweep at the PHYA locus in the Northern European Spiterstulen population of Arabidopsis lyrata.
    Toivainen T; Pyhäjärvi T; Niittyvuopio A; Savolainen O
    Mol Ecol; 2014 Mar; 23(5):1040-52. PubMed ID: 24471518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species.
    Minder AM; Widmer A
    Mol Ecol; 2008 Mar; 17(6):1552-63. PubMed ID: 18321255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana.
    Orgil U; Araki H; Tangchaiburana S; Berkey R; Xiao S
    Genetics; 2007 Aug; 176(4):2317-33. PubMed ID: 17565954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives.
    Wu Q; Han TS; Chen X; Chen JF; Zou YP; Li ZW; Xu YC; Guo YL
    Genome Biol; 2017 Nov; 18(1):217. PubMed ID: 29141655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.