BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 28630130)

  • 1. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structured Populations of Sulfolobus acidocaldarius with Susceptibility to Mobile Genetic Elements.
    Anderson RE; Kouris A; Seward CH; Campbell KM; Whitaker RJ
    Genome Biol Evol; 2017 Jun; 9(6):1699-1710. PubMed ID: 28633403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Grogan DW; Carver GT; Drake JW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7928-33. PubMed ID: 11427720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.
    Sakofsky CJ; Grogan DW
    Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.
    Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA
    J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.
    Grogan DW
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):88-91. PubMed ID: 19143608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.
    Sakofsky CJ; Foster PL; Grogan DW
    DNA Repair (Amst); 2012 Apr; 11(4):391-400. PubMed ID: 22305938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems.
    Grogan DW; Stengel KR
    Mol Microbiol; 2008 Sep; 69(5):1255-65. PubMed ID: 18631240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius.
    Bell GD; Grogan DW
    Archaea; 2002 Mar; 1(1):45-52. PubMed ID: 15803658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Grogan DW; Hansen JE
    J Bacteriol; 2003 Feb; 185(4):1266-72. PubMed ID: 12562797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species.
    Mao D; Grogan D
    ISME J; 2012 Aug; 6(8):1613-6. PubMed ID: 22418622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.
    Rockwood J; Mao D; Grogan DW
    Microbiology (Reading); 2013 Sep; 159(Pt 9):1888-1899. PubMed ID: 23832004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Reilly MS; Grogan DW
    FEMS Microbiol Lett; 2002 Feb; 208(1):29-34. PubMed ID: 11934490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo.
    Suzuki S; Kurosawa N
    Extremophiles; 2019 Sep; 23(5):613-624. PubMed ID: 31377865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress.
    Benninghoff JC; Kuschmierz L; Zhou X; Albersmeier A; Pham TK; Busche T; Wright PC; Kalinowski J; Makarova KS; Bräsen C; Flemming HC; Wingender J; Siebers B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741627
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange.
    Reilly MS; Grogan DW
    J Bacteriol; 2001 May; 183(9):2943-6. PubMed ID: 11292816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses.
    Kurosawa N; Grogan DW
    FEMS Microbiol Lett; 2005 Dec; 253(1):141-9. PubMed ID: 16243457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of spontaneous mutation in an archaeon from geothermal environments.
    Jacobs KL; Grogan DW
    J Bacteriol; 1997 May; 179(10):3298-303. PubMed ID: 9150227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation.
    Hansen JE; Dill AC; Grogan DW
    J Bacteriol; 2005 Jan; 187(2):805-9. PubMed ID: 15629955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.