These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28630162)

  • 21. AFM imaging of pore forming proteins.
    Hodel AW; Hammond K; Hoogenboom BW
    Methods Enzymol; 2021; 649():149-188. PubMed ID: 33712186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional one-dimensional lipid bilayers on carbon nanotube templates.
    Artyukhin AB; Shestakov A; Harper J; Bakajin O; Stroeve P; Noy A
    J Am Chem Soc; 2005 May; 127(20):7538-42. PubMed ID: 15898805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AFM-based force-clamp monitors lipid bilayer failure kinetics.
    Redondo-Morata L; Giannotti MI; Sanz F
    Langmuir; 2012 Apr; 28(15):6403-10. PubMed ID: 22443887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress in the application of atomic force microscopy for supported lipid bilayers.
    Zhong J; He D
    Chemistry; 2012 Apr; 18(14):4148-55. PubMed ID: 22389070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker.
    Wagner ML; Tamm LK
    Biophys J; 2000 Sep; 79(3):1400-14. PubMed ID: 10969002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic force microscopy of lipid domains in supported model membranes.
    Burns AR
    Methods Mol Biol; 2007; 398():263-82. PubMed ID: 18214386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Tunuguntla RH; Zhang Y; Henley RY; Yao YC; Pham TA; Wanunu M; Noy A
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sonochemical Synthesis and Ion Transport Properties of Surfactant-Stabilized Carbon Nanotube Porins.
    Zhao S; Gillen AJ; Li Y; Noy A
    J Phys Chem Lett; 2023 Oct; 14(41):9372-9376. PubMed ID: 37823530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and characterization of soft-supported lipid bilayer membranes for biosensors application.
    Jimenez J; Heim AJ; Matthews WG; Alcantar N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4119-22. PubMed ID: 17947068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid domains in supported lipid bilayer for atomic force microscopy.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Methods Mol Biol; 2007; 400():503-13. PubMed ID: 17951756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic force microscopy force mapping in the study of supported lipid bilayers.
    Li JK; Sullan RM; Zou S
    Langmuir; 2011 Feb; 27(4):1308-13. PubMed ID: 21090659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AFM for structure and dynamics of biomembranes.
    Goksu EI; Vanegas JM; Blanchette CD; Lin WC; Longo ML
    Biochim Biophys Acta; 2009 Jan; 1788(1):254-66. PubMed ID: 18822269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy.
    Schabert FA; Henn C; Engel A
    Science; 1995 Apr; 268(5207):92-4. PubMed ID: 7701347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.
    Picas L; Milhiet PE; Hernández-Borrell J
    Chem Phys Lipids; 2012 Dec; 165(8):845-60. PubMed ID: 23194897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force spectroscopy as a tool to investigate the properties of supported lipid membranes.
    Canale C; Jacono M; Diaspro A; Dante S
    Microsc Res Tech; 2010 Oct; 73(10):965-72. PubMed ID: 20232466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach.
    Ratto TV; Longo ML
    Biophys J; 2002 Dec; 83(6):3380-92. PubMed ID: 12496105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy.
    Haruyama T; Sugano Y; Kodera N; Uchihashi T; Ando T; Tanaka Y; Konno H; Tsukazaki T
    Structure; 2019 Jan; 27(1):152-160.e3. PubMed ID: 30318467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy.
    Skaug MJ; Faller R; Longo ML
    J Chem Phys; 2011 Jun; 134(21):215101. PubMed ID: 21663377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.