These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28630162)

  • 41. Diffusion in low-dimensional lipid membranes.
    Heath GR; Roth J; Connell SD; Evans SD
    Nano Lett; 2014 Oct; 14(10):5984-8. PubMed ID: 25166509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Resolution and High-Speed Atomic Force Microscope Imaging.
    Zuttion F; Redondo-Morata L; Marchesi A; Casuso I
    Methods Mol Biol; 2018; 1814():181-200. PubMed ID: 29956233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic force microscopy of supported lipid bilayers.
    Mingeot-Leclercq MP; Deleu M; Brasseur R; Dufrêne YF
    Nat Protoc; 2008; 3(10):1654-9. PubMed ID: 18833202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative Analysis of Structure and Dynamics in AFM Images of Lipid Membranes.
    Connell SD; Heath GR; Goodchild JA
    Methods Mol Biol; 2019; 1886():29-44. PubMed ID: 30374860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.
    Das C; Sheikh KH; Olmsted PD; Connell SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041920. PubMed ID: 21230326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid bilayers covalently anchored to carbon nanotubes.
    Dayani Y; Malmstadt N
    Langmuir; 2012 May; 28(21):8174-82. PubMed ID: 22568448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale.
    Miyagi A; Chipot C; Rangl M; Scheuring S
    Nat Nanotechnol; 2016 Sep; 11(9):783-90. PubMed ID: 27271964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy.
    Redondo-Morata L; Giannotti MI; Sanz F
    Mol Membr Biol; 2014 Feb; 31(1):17-28. PubMed ID: 24341385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic force spectroscopy with magainin 1 functionalized tips and biomimetic supported lipid membranes.
    Besleaga A; Apetrei A; Sirghi L
    Eur Biophys J; 2022 Jan; 51(1):29-40. PubMed ID: 35031815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Free-standing lipid films stabilized by Annexin-A5.
    Simon A; Gounou C; Tan S; Tiefenauer L; Di Berardino M; Brisson AR
    Biochim Biophys Acta; 2013 Nov; 1828(11):2739-44. PubMed ID: 23928126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assemblies of pore-forming toxins visualized by atomic force microscopy.
    Yilmaz N; Kobayashi T
    Biochim Biophys Acta; 2016 Mar; 1858(3):500-11. PubMed ID: 26577274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.
    Suárez-Germà C; Morros A; Montero MT; Hernández-Borrell J; Domènech Ò
    Chem Phys Lipids; 2014 Oct; 183():208-17. PubMed ID: 25093830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoscale analysis of supported lipid bilayers using atomic force microscopy.
    El Kirat K; Morandat S; Dufrêne YF
    Biochim Biophys Acta; 2010 Apr; 1798(4):750-65. PubMed ID: 19664999
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer.
    Guo Y; Werner M; Seemann R; Baulin VA; Fleury JB
    ACS Nano; 2018 Dec; 12(12):12042-12049. PubMed ID: 30452223
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis.
    Liu J; Hopfinger AJ
    Chem Res Toxicol; 2008 Feb; 21(2):459-66. PubMed ID: 18189365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atomic force microscopy of model lipid membranes.
    Morandat S; Azouzi S; Beauvais E; Mastouri A; El Kirat K
    Anal Bioanal Chem; 2013 Feb; 405(5):1445-61. PubMed ID: 22968685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AFM imaging of functionalized carbon nanotubes on biological membranes.
    Lamprecht C; Liashkovich I; Neves V; Danzberger J; Heister E; Rangl M; Coley HM; McFadden J; Flahaut E; Gruber HJ; Hinterdorfer P; Kienberger F; Ebner A
    Nanotechnology; 2009 Oct; 20(43):434001. PubMed ID: 19801758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pulling nanotubes from supported bilayers.
    Armond JW; Macpherson JV; Turner MS
    Langmuir; 2011 Jul; 27(13):8269-74. PubMed ID: 21650171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymerized lipid bilayers on a solid substrate: morphologies and obstruction of lateral diffusion.
    Okazaki T; Inaba T; Tatsu Y; Tero R; Urisu T; Morigaki K
    Langmuir; 2009 Jan; 25(1):345-51. PubMed ID: 19067577
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of calcium on direct incorporation of membrane proteins into in-plane lipid bilayer.
    Berquand A; Lévy D; Gubellini F; Le Grimellec C; Milhiet PE
    Ultramicroscopy; 2007 Oct; 107(10-11):928-33. PubMed ID: 17544216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.