These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28630162)

  • 61. Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers.
    Benz M; Gutsmann T; Chen N; Tadmor R; Israelachvili J
    Biophys J; 2004 Feb; 86(2):870-9. PubMed ID: 14747322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unraveling lipid/protein interaction in model lipid bilayers by Atomic Force Microscopy.
    Alessandrini A; Facci P
    J Mol Recognit; 2011; 24(3):387-96. PubMed ID: 21504015
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phase transitions in supported lipid bilayers studied by AFM.
    Alessandrini A; Facci P
    Soft Matter; 2014 Oct; 10(37):7145-64. PubMed ID: 25090108
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
    Garcia-Fandiño R; Piñeiro Á; Trick JL; Sansom MS
    ACS Nano; 2016 Mar; 10(3):3693-701. PubMed ID: 26943498
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High resolution nanomechanical characterization of multi-domain model membranes by fast Force Volume.
    Seghezza S; Dante S; Diaspro A; Canale C
    J Mol Recognit; 2015 Dec; 28(12):742-50. PubMed ID: 26224416
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules.
    Heath GR; Scheuring S
    Nat Commun; 2018 Nov; 9(1):4983. PubMed ID: 30478320
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers.
    Piantanida L; Bolt HL; Rozatian N; Cobb SL; Voïtchovsky K
    Biophys J; 2017 Jul; 113(2):426-439. PubMed ID: 28746853
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Membrane protein distribution in composite polymer-lipid thin films.
    Thoma J; Belegrinou S; Rossbach P; Grzelakowski M; Kita-Tokarczyk K; Meier W
    Chem Commun (Camb); 2012 Sep; 48(70):8811-3. PubMed ID: 22836593
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tuning membrane protein mobility by confinement into nanodomains.
    Karner A; Nimmervoll B; Plochberger B; Klotzsch E; Horner A; Knyazev DG; Kuttner R; Winkler K; Winter L; Siligan C; Ollinger N; Pohl P; Preiner J
    Nat Nanotechnol; 2017 Mar; 12(3):260-266. PubMed ID: 27842062
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Topographically smooth and stable supported lipid bilayer for high-resolution AFM studies.
    Banerjee S; Lyubchenko YL
    Methods; 2022 Jan; 197():13-19. PubMed ID: 33609699
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optimum Substrates for Imaging Biological Molecules with High-Speed Atomic Force Microscopy.
    Uchihashi T; Watanabe H; Kodera N
    Methods Mol Biol; 2018; 1814():159-179. PubMed ID: 29956232
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Supported Lipid Bilayers (SLBs) to Study Amyloid-Lipid Membrane Interactions with Atomic Force Microscopy.
    Cava DG; Vélez M
    Methods Mol Biol; 2022; 2538():109-116. PubMed ID: 35951296
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective.
    Garcia-Manyes S; Sanz F
    Biochim Biophys Acta; 2010 Apr; 1798(4):741-9. PubMed ID: 20044974
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transfer on hydrophobic substrates and AFM imaging of membrane proteins reconstituted in planar lipid bilayers.
    Seantier B; Dezi M; Gubellini F; Berquand A; Godefroy C; Dosset P; Lévy D; Milhiet PE
    J Mol Recognit; 2011; 24(3):461-6. PubMed ID: 21504024
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular dynamics simulation of the size effect of carbon nanotubes on the bulk modulus of a lipid bilayer.
    Gan Y; Chen Z
    Mol Cell Biomech; 2006 Sep; 3(3):89-94. PubMed ID: 17263255
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores.
    Simon A; Girard-Egrot A; Sauter F; Pudda C; Picollet D'Hahan N; Blum L; Chatelain F; Fuchs A
    J Colloid Interface Sci; 2007 Apr; 308(2):337-43. PubMed ID: 17275017
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors.
    Tripathi P; Shuai L; Joshi H; Yamazaki H; Fowle WH; Aksimentiev A; Fenniri H; Wanunu M
    J Am Chem Soc; 2020 Jan; 142(4):1680-1685. PubMed ID: 31913034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.