BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 28630188)

  • 21. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics.
    Defraine V; Fauvart M; Michiels J
    Drug Resist Updat; 2018 May; 38():12-26. PubMed ID: 29857815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Glycopolymer Eradicates Antibiotic- and CCCP-Induced Persister Cells in
    Narayanaswamy VP; Keagy LL; Duris K; Wiesmann W; Loughran AJ; Townsend SM; Baker S
    Front Microbiol; 2018; 9():1724. PubMed ID: 30123191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies.
    Pang Z; Raudonis R; Glick BR; Lin TJ; Cheng Z
    Biotechnol Adv; 2019; 37(1):177-192. PubMed ID: 30500353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Four years of monitoring of antibiotic sensitivity rates of Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients in intensive care unit and inpatient clinics].
    Alişkan H; Colakoğlu S; Turunç T; Demiroğlu YZ; Erdoğan F; Akin S; Arslan H
    Mikrobiyol Bul; 2008 Apr; 42(2):321-9. PubMed ID: 18697430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time monitoring of
    Žiemytė M; Carda-Diéguez M; Rodríguez-Díaz JC; Ventero MP; Mira A; Ferrer MD
    Emerg Microbes Infect; 2021 Dec; 10(1):2062-2075. PubMed ID: 34663186
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Lob SH; Hackel MA; Kazmierczak KM; Young K; Motyl MR; Karlowsky JA; Sahm DF
    Antimicrob Agents Chemother; 2017 Jun; 61(6):. PubMed ID: 28320716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae.
    Lee MY; Ko KS; Song JH; Peck KR
    J Antimicrob Chemother; 2007 Oct; 60(4):782-7. PubMed ID: 17681978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.
    Brunati C; Thomsen TT; Gaspari E; Maffioli S; Sosio M; Jabes D; Løbner-Olesen A; Donadio S
    J Antimicrob Chemother; 2018 Feb; 73(2):414-424. PubMed ID: 29092042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GroEL/ES inhibitors as potential antibiotics.
    Abdeen S; Salim N; Mammadova N; Summers CM; Frankson R; Ambrose AJ; Anderson GG; Schultz PG; Horwich AL; Chapman E; Johnson SM
    Bioorg Med Chem Lett; 2016 Jul; 26(13):3127-3134. PubMed ID: 27184767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of Pseudomonas aeruginosa by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers.
    Howard JJ; Sturge CR; Moustafa DA; Daly SM; Marshall-Batty KR; Felder CF; Zamora D; Yabe-Gill M; Labandeira-Rey M; Bailey SM; Wong M; Goldberg JB; Geller BL; Greenberg DE
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28137807
    [No Abstract]   [Full Text] [Related]  

  • 31. Combatting bacterial infections by killing persister cells with mitomycin C.
    Kwan BW; Chowdhury N; Wood TK
    Environ Microbiol; 2015 Nov; 17(11):4406-14. PubMed ID: 25858802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudomonas aeruginosa: targeting cell-wall metabolism for new antibacterial discovery and development.
    Lamers RP; Burrows LL
    Future Med Chem; 2016 Jun; 8(9):975-92. PubMed ID: 27228070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials.
    Spoering AL; Lewis K
    J Bacteriol; 2001 Dec; 183(23):6746-51. PubMed ID: 11698361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel genes that promote persister formation by repressing transcription and cell division in Pseudomonas aeruginosa.
    Long Y; Fu W; Li S; Ren H; Li M; Liu C; Zhang B; Xia Y; Fan Z; Xu C; Liu J; Jin Y; Bai F; Cheng Z; Liu X; Jin S; Wu W
    J Antimicrob Chemother; 2019 Sep; 74(9):2575-2587. PubMed ID: 31139822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.
    Chua SL; Yam JK; Hao P; Adav SS; Salido MM; Liu Y; Givskov M; Sze SK; Tolker-Nielsen T; Yang L
    Nat Commun; 2016 Feb; 7():10750. PubMed ID: 26892159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms.
    Reffuveille F; de la Fuente-Núñez C; Mansour S; Hancock RE
    Antimicrob Agents Chemother; 2014 Sep; 58(9):5363-71. PubMed ID: 24982074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections.
    Wagner S; Sommer R; Hinsberger S; Lu C; Hartmann RW; Empting M; Titz A
    J Med Chem; 2016 Jul; 59(13):5929-69. PubMed ID: 26804741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explorative gene analysis of antibiotic tolerance-related genes in adherent and biofilm cells of Pseudomonas aeruginosa.
    Murakami K; Ono T; Noma Y; Minase I; Amoh T; Irie Y; Hirota K; Miyake Y
    J Infect Chemother; 2017 May; 23(5):271-277. PubMed ID: 28274550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paenibacterin, a novel broad-spectrum lipopeptide antibiotic, neutralises endotoxins and promotes survival in a murine model of Pseudomonas aeruginosa-induced sepsis.
    Huang E; Yousef AE
    Int J Antimicrob Agents; 2014 Jul; 44(1):74-7. PubMed ID: 24802906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens.
    Behroozian S; Svensson SL; Davies J
    mBio; 2016 Jan; 7(1):e01842-15. PubMed ID: 26814180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.