These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28630306)

  • 1. Heat exchange between a bouncing drop and a superhydrophobic substrate.
    Shiri S; Bird JC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6930-6935. PubMed ID: 28630306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting.
    Shiri S; Murrizi A; Bird JC
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30715065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the contact time of a bouncing drop.
    Bird JC; Dhiman R; Kwon HM; Varanasi KK
    Nature; 2013 Nov; 503(7476):385-8. PubMed ID: 24256803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold-induced spreading of water drops on hydrophobic surfaces.
    Tavakoli F; Kavehpour HP
    Langmuir; 2015 Feb; 31(7):2120-6. PubMed ID: 25631237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waterbowls: Reducing Impacting Droplet Interactions by Momentum Redirection.
    Girard HL; Soto D; Varanasi KK
    ACS Nano; 2019 Jul; 13(7):7729-7735. PubMed ID: 31243952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop-on-Drop Impact Dynamics on a Superhydrophobic Surface.
    Jaiswal AK; Khandekar S
    Langmuir; 2021 Nov; 37(43):12629-12642. PubMed ID: 34670364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancake bouncing: simulations and theory and experimental verification.
    Moevius L; Liu Y; Wang Z; Yeomans JM
    Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics.
    Zhan H; Lu C; Liu C; Wang Z; Lv C; Liu Y
    Phys Rev Lett; 2021 Jun; 126(23):234503. PubMed ID: 34170170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact time on curved superhydrophobic surfaces.
    Han J; Kim W; Bae C; Lee D; Shin S; Nam Y; Lee C
    Phys Rev E; 2020 Apr; 101(4-1):043108. PubMed ID: 32422796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry-Breaking Drop Bouncing on Superhydrophobic Surfaces with Continuously Changing Curvatures.
    Choi W; Yun S
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation of pure liquid sessile and spherical suspended drops: a review.
    Erbil HY
    Adv Colloid Interface Sci; 2012 Jan; 170(1-2):67-86. PubMed ID: 22277832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces.
    Thenarianto C; Koh XQ; Lin M; Jokinen V; Daniel D
    Langmuir; 2023 Feb; 39(8):3162-3167. PubMed ID: 36795493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.
    Mohammadi M; Tembely M; Dolatabadi A
    Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Penetration through a Superhydrophobic Mesh During a Drop Impact.
    Ryu S; Sen P; Nam Y; Lee C
    Phys Rev Lett; 2017 Jan; 118(1):014501. PubMed ID: 28106449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.