These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28630411)

  • 1. Single phase 3D phononic band gap material.
    Warmuth F; Wormser M; Körner C
    Sci Rep; 2017 Jun; 7(1):3843. PubMed ID: 28630411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization.
    Wormser M; Wein F; Stingl M; Körner C
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Transmission Measurement Methods of Elastic Waves in Phononic Band Gap Materials.
    Wormser M; Kiefer DA; Rupitsch SJ; Körner C
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete band gaps in two-dimensional phononic crystal slabs.
    Khelif A; Aoubiza B; Mohammadi S; Adibi A; Laude V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046610. PubMed ID: 17155195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic design of phononic band-gap materials and structures by topology optimization.
    Sigmund O; Jensen JS
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):1001-19. PubMed ID: 12804226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing uniaxial tension to tune Poisson's ratio and wave propagation in soft porous phononic crystals: an experimental study.
    Gao N; Li J; Bao RH; Chen WQ
    Soft Matter; 2019 Apr; 15(14):2921-2927. PubMed ID: 30694287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations.
    Liu ZF; Wu B; He CF
    Ultrasonics; 2016 Feb; 65():249-57. PubMed ID: 26456279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
    Warmuth F; Körner C
    Materials (Basel); 2015 Dec; 8(12):8327-8337. PubMed ID: 28793713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.
    Miniaci M; Marzani A; Testoni N; De Marchi L
    Ultrasonics; 2015 Feb; 56():251-9. PubMed ID: 25129653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of Complex 3D Phononic Crystals with Wide Complete Acoustic Band Gaps.
    Lucklum F; Vellekoop M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):796-767. PubMed ID: 27008667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft phononic crystals with deformation-independent band gaps.
    Zhang P; Parnell WJ
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160865. PubMed ID: 28484331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete phononic band gaps in the 3D Yablonovite structure with spheres.
    Aravantinos-Zafiris N; Lucklum F; Sigalas MM
    Ultrasonics; 2021 Feb; 110():106265. PubMed ID: 33038646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).
    Cheng Y; Liu XJ; Wu DJ
    J Acoust Soc Am; 2011 Mar; 129(3):1157-60. PubMed ID: 21428478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
    Vatanabe SL; Paulino GH; Silva EC
    J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperelastic Tuning of One-Dimensional Phononic Band Gaps Using Directional Stress.
    Demcenko A; Mazilu M; Wilson R; Volker AWF; Cooper JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1056-1061. PubMed ID: 29856723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguiding inside the complete band gap of a phononic crystal slab.
    Hsiao FL; Khelif A; Moubchir H; Choujaa A; Chen CC; Laude V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056601. PubMed ID: 18233776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.
    Zhou C; Sai Y; Chen J
    Ultrasonics; 2016 Sep; 71():69-74. PubMed ID: 27281285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pole distribution in finite phononic crystals: Understanding Bragg-effects through closed-form system dynamics.
    Al Ba'ba'a H; Nouh M; Singh T
    J Acoust Soc Am; 2017 Sep; 142(3):1399. PubMed ID: 28964106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials.
    Wilm M; Khelif A; Ballandras S; Laude V; Djafari-Rouhani B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065602. PubMed ID: 16241296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.