These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 28630428)
1. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Zhang C; Mao HL; Cao Y Sci Rep; 2017 Jun; 7(1):3769. PubMed ID: 28630428 [TBL] [Abstract][Full Text] [Related]
2. Expression and distribution of symplekin regulates the assembly and function of the epithelial tight junction. Chang H; Zhang C; Cao Y Histochem Cell Biol; 2012 Mar; 137(3):319-27. PubMed ID: 22218735 [TBL] [Abstract][Full Text] [Related]
3. Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Buchert M; Papin M; Bonnans C; Darido C; Raye WS; Garambois V; Pélegrin A; Bourgaux JF; Pannequin J; Joubert D; Hollande F Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2628-33. PubMed ID: 20133805 [TBL] [Abstract][Full Text] [Related]
4. Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Duhamel S; Hébert J; Gaboury L; Bouchard A; Simon R; Sauter G; Basik M; Meloche S Cancer Res; 2012 Feb; 72(3):626-35. PubMed ID: 22298595 [TBL] [Abstract][Full Text] [Related]
6. The duration of nuclear extracellular signal-regulated kinase 1 and 2 signaling during cell cycle reentry distinguishes proliferation from apoptosis in response to asbestos. Yuan Z; Taatjes DJ; Mossman BT; Heintz NH Cancer Res; 2004 Sep; 64(18):6530-6. PubMed ID: 15374964 [TBL] [Abstract][Full Text] [Related]
7. Meprinα transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration. Minder P; Bayha E; Becker-Pauly C; Sterchi EE J Biol Chem; 2012 Oct; 287(42):35201-35211. PubMed ID: 22923609 [TBL] [Abstract][Full Text] [Related]
8. Functional interaction between the ZO-1-interacting transcription factor ZONAB/DbpA and the RNA processing factor symplekin. Kavanagh E; Buchert M; Tsapara A; Choquet A; Balda MS; Hollande F; Matter K J Cell Sci; 2006 Dec; 119(Pt 24):5098-105. PubMed ID: 17158914 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of ERK5 on Thr732 is associated with ERK5 nuclear localization and ERK5-dependent transcription. Honda T; Obara Y; Yamauchi A; Couvillon AD; Mason JJ; Ishii K; Nakahata N PLoS One; 2015; 10(2):e0117914. PubMed ID: 25689862 [TBL] [Abstract][Full Text] [Related]
10. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Sanna B; Bueno OF; Dai YS; Wilkins BJ; Molkentin JD Mol Cell Biol; 2005 Feb; 25(3):865-78. PubMed ID: 15657416 [TBL] [Abstract][Full Text] [Related]
11. ERK phosphorylation and nuclear accumulation: insights from single-cell imaging. Caunt CJ; McArdle CA Biochem Soc Trans; 2012 Feb; 40(1):224-9. PubMed ID: 22260695 [TBL] [Abstract][Full Text] [Related]
12. ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells. Sarközi R; Miller B; Pollack V; Feifel E; Mayer G; Sorokin A; Schramek H J Cell Physiol; 2007 Apr; 211(1):88-100. PubMed ID: 17131384 [TBL] [Abstract][Full Text] [Related]
13. Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Tyagi A; Agarwal R; Agarwal C Oncogene; 2003 Mar; 22(9):1302-16. PubMed ID: 12618755 [TBL] [Abstract][Full Text] [Related]
14. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Wainstein E; Seger R Curr Opin Cell Biol; 2016 Apr; 39():15-20. PubMed ID: 26827288 [TBL] [Abstract][Full Text] [Related]
15. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation. Xie H; Yang J; Xing W; Dong Y; Ren H Biochem Biophys Res Commun; 2016 Feb; 470(2):466-472. PubMed ID: 26742423 [TBL] [Abstract][Full Text] [Related]
16. TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells. Zhao SL; Hong J; Xie ZQ; Tang JT; Su WY; Du W; Chen YX; Lu R; Sun DF; Fang JY PLoS One; 2011; 6(8):e23262. PubMed ID: 21826244 [TBL] [Abstract][Full Text] [Related]
17. Constitutive activation of the MEK/ERK pathway inhibits intestinal epithelial cell differentiation. Lemieux E; Boucher MJ; Mongrain S; Boudreau F; Asselin C; Rivard N Am J Physiol Gastrointest Liver Physiol; 2011 Oct; 301(4):G719-30. PubMed ID: 21737780 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical strain-induced modulation of proliferation coincides with an ERK1/2-independent nuclear YAP localization. Hülter-Hassler D; Wein M; Schulz SD; Proksch S; Steinberg T; Jung BA; Tomakidi P Exp Cell Res; 2017 Dec; 361(1):93-100. PubMed ID: 29017756 [TBL] [Abstract][Full Text] [Related]
19. Insights into regulation of human Schwann cell proliferation by Erk1/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli. Tapinos N; Rambukkana A Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9188-93. PubMed ID: 15967991 [TBL] [Abstract][Full Text] [Related]
20. ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. Sharma-Walia N; Krishnan HH; Naranatt PP; Zeng L; Smith MS; Chandran B J Virol; 2005 Aug; 79(16):10308-29. PubMed ID: 16051824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]