These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28631029)

  • 1. Syngas Biorefinery and Syngas Utilization.
    De Tissera S; Köpke M; Simpson SD; Humphreys C; Minton NP; Dürre P
    Adv Biochem Eng Biotechnol; 2019; 166():247-280. PubMed ID: 28631029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.
    Daniell J; Nagaraju S; Burton F; Köpke M; Simpson SD
    Adv Biochem Eng Biotechnol; 2016; 156():293-321. PubMed ID: 26957126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C1-carbon sources for chemical and fuel production by microbial gas fermentation.
    Dürre P; Eikmanns BJ
    Curr Opin Biotechnol; 2015 Dec; 35():63-72. PubMed ID: 25841103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiology of synthesis gas fermentation for biofuel production.
    Henstra AM; Sipma J; Rinzema A; Stams AJ
    Curr Opin Biotechnol; 2007 Jun; 18(3):200-6. PubMed ID: 17399976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals.
    Zhang JZ; Li YZ; Xi ZN; Gao HP; Zhang Q; Liu LC; Li FL; Ma XQ
    Front Bioeng Biotechnol; 2024; 12():1395540. PubMed ID: 39055341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofuel and chemical production from carbon one industry flux gas by acetogenic bacteria.
    Fan YX; Zhang JZ; Zhang Q; Ma XQ; Liu ZY; Lu M; Qiao K; Li FL
    Adv Appl Microbiol; 2021; 117():1-34. PubMed ID: 34742365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.
    Yasin M; Jeong Y; Park S; Jeong J; Lee EY; Lovitt RW; Kim BH; Lee J; Chang IS
    Bioresour Technol; 2015 Feb; 177():361-74. PubMed ID: 25443672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system.
    Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y
    Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Anaerobic Synthesis Gas (Syngas) and CO
    Bengelsdorf FR; Beck MH; Erz C; Hoffmeister S; Karl MM; Riegler P; Wirth S; Poehlein A; Weuster-Botz D; Dürre P
    Adv Appl Microbiol; 2018; 103():143-221. PubMed ID: 29914657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.
    Munasinghe PC; Khanal SK
    Bioresour Technol; 2010 Jul; 101(13):5013-22. PubMed ID: 20096574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of biofuels from synthesis gas using microbial catalysts.
    Tirado-Acevedo O; Chinn MS; Grunden AM
    Adv Appl Microbiol; 2010; 70():57-92. PubMed ID: 20359454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.
    Groher A; Weuster-Botz D
    J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial synthesis gas (syngas) fermentation.
    Bengelsdorf FR; Straub M; Dürre P
    Environ Technol; 2013; 34(13-16):1639-51. PubMed ID: 24350425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria.
    Bertsch J; Müller V
    Biotechnol Biofuels; 2015; 8():210. PubMed ID: 26692897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia.
    Parera Olm I; Sousa DZ
    Adv Biochem Eng Biotechnol; 2022; 180():373-407. PubMed ID: 34811579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth.
    Song Y; Shin J; Jin S; Lee JK; Kim DR; Kim SC; Cho S; Cho BK
    BMC Genomics; 2018 Nov; 19(1):837. PubMed ID: 30470174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in engineering
    Wan S; Lai M; Gao X; Zhou M; Yang S; Li Q; Li F; Xia L; Tan Y
    Synth Syst Biotechnol; 2024 Mar; 9(1):19-25. PubMed ID: 38205027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.