These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 28631614)

  • 1. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity.
    Zhang Y; Zhai D; Xu M; Yao Q; Zhu H; Chang J; Wu C
    Biofabrication; 2017 Jun; 9(2):025037. PubMed ID: 28631614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed bioceramic scaffolds with a Fe
    Zhang Y; Zhai D; Xu M; Yao Q; Chang J; Wu C
    J Mater Chem B; 2016 May; 4(17):2874-2886. PubMed ID: 32262965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties.
    Alves APN; Arango-Ospina M; Oliveira RLMS; Ferreira IM; de Moraes EG; Hartmann M; de Oliveira APN; Boccaccini AR; de Sousa Trichês E
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):881-894. PubMed ID: 36440654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1α.
    Zhang W; Chang Q; Xu L; Li G; Yang G; Ding X; Wang X; Cui D; Jiang X
    Adv Healthc Mater; 2016 Jun; 5(11):1299-309. PubMed ID: 26945787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.
    Boga JC; Miguel SP; de Melo-Diogo D; Mendonça AG; Louro RO; Correia IJ
    Colloids Surf B Biointerfaces; 2018 May; 165():207-218. PubMed ID: 29486449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multifunctional Antibacterial and Osteogenic Nanomedicine: QAS-Modified Core-Shell Mesoporous Silica Containing Ag Nanoparticles.
    Li D; Qiu Y; Zhang S; Zhang M; Chen Z; Chen J
    Biomed Res Int; 2020; 2020():4567049. PubMed ID: 33015165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles.
    Sánchez-Salcedo S; García A; González-Jiménez A; Vallet-Regí M
    Acta Biomater; 2023 Jan; 155():654-666. PubMed ID: 36332875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.