These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28631845)
1. Mild metabolic perturbations alter succinylation of mitochondrial proteins. Chen H; Xu H; Potash S; Starkov A; Belousov VV; Bilan DS; Denton TT; Gibson GE J Neurosci Res; 2017 Nov; 95(11):2244-2252. PubMed ID: 28631845 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. Boylston JA; Sun J; Chen Y; Gucek M; Sack MN; Murphy E J Mol Cell Cardiol; 2015 Nov; 88():73-81. PubMed ID: 26388266 [TBL] [Abstract][Full Text] [Related]
3. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. Ali HR; Michel CR; Lin YH; McKinsey TA; Jeong MY; Ambardekar AV; Cleveland JC; Reisdorph R; Reisdorph N; Woulfe KC; Fritz KS J Mol Cell Cardiol; 2020 Jan; 138():304-317. PubMed ID: 31836543 [TBL] [Abstract][Full Text] [Related]
4. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
5. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates. Circu ML; Maloney RE; Aw TY Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461 [TBL] [Abstract][Full Text] [Related]
6. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats. Olguín-Martínez M; Hernández-Espinosa DR; Hernández-Muñoz R Free Radic Biol Med; 2013 Dec; 65():1090-1100. PubMed ID: 23994576 [TBL] [Abstract][Full Text] [Related]
7. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. Gibson GE; Xu H; Chen HL; Chen W; Denton TT; Zhang S J Neurochem; 2015 Jul; 134(1):86-96. PubMed ID: 25772995 [TBL] [Abstract][Full Text] [Related]
9. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. Wagner GR; Payne RM J Biol Chem; 2013 Oct; 288(40):29036-45. PubMed ID: 23946487 [TBL] [Abstract][Full Text] [Related]
10. Ablation of Hershberger KA; Abraham DM; Liu J; Locasale JW; Grimsrud PA; Hirschey MD J Biol Chem; 2018 Jul; 293(27):10630-10645. PubMed ID: 29769314 [TBL] [Abstract][Full Text] [Related]
11. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Rardin MJ; He W; Nishida Y; Newman JC; Carrico C; Danielson SR; Guo A; Gut P; Sahu AK; Li B; Uppala R; Fitch M; Riiff T; Zhu L; Zhou J; Mulhern D; Stevens RD; Ilkayeva OR; Newgard CB; Jacobson MP; Hellerstein M; Goetzman ES; Gibson BW; Verdin E Cell Metab; 2013 Dec; 18(6):920-33. PubMed ID: 24315375 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Berridge MV; Tan AS Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225 [TBL] [Abstract][Full Text] [Related]
13. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Yuan T; Keijer J; Guo AH; Lombard DB; de Boer VCJ Sci Rep; 2020 Oct; 10(1):17030. PubMed ID: 33046741 [TBL] [Abstract][Full Text] [Related]
14. Generation of superoxide by the mitochondrial Complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity. Frizzell N; Thomas SA; Carson JA; Baynes JW Biochem J; 2012 Jul; 445(2):247-54. PubMed ID: 22524437 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells. Chen Y Methods Mol Biol; 2016; 1410():23-37. PubMed ID: 26867736 [TBL] [Abstract][Full Text] [Related]
17. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
18. Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice. Bentley NL; Fiveash CE; Osborne B; Quek LE; Ogura M; Inagaki N; Cooney GJ; Polly P; Montgomery MK; Turner N Biochem Biophys Res Commun; 2018 Sep; 503(3):1349-1355. PubMed ID: 30017194 [TBL] [Abstract][Full Text] [Related]
19. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression. Yan W; Xie C; Sun S; Zheng Q; Wang J; Wang Z; Man CH; Wang H; Yang Y; Wang T; Shi L; Zhang S; Huang C; Xu S; Wang YP EMBO J; 2024 Jun; 43(12):2337-2367. PubMed ID: 38649537 [TBL] [Abstract][Full Text] [Related]
20. SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in ob/ob mice. Du Y; Hu H; Qu S; Wang J; Hua C; Zhang J; Wei P; He X; Hao J; Liu P; Yang F; Li T; Wei T EBioMedicine; 2018 Oct; 36():347-357. PubMed ID: 30279144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]