These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28631861)

  • 1. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.
    Zhao L; Wei J; Lu J; He C; Duan C
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8692-8696. PubMed ID: 28631861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones.
    Chen QA; Chen MW; Yu CB; Shi L; Wang DS; Yang Y; Zhou YG
    J Am Chem Soc; 2011 Oct; 133(41):16432-5. PubMed ID: 21932832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of a Quinhydrone Cofactor in the Inner Pocket of Cobalt Triangular Prisms: Combined Light-Driven Reduction of Protons and Hydrogenation of Nitrobenzene.
    Zhao L; Wei J; Zhang J; He C; Duan C
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15284-15288. PubMed ID: 29094793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Redox Events by Dye Encapsulation Applied to Light-Driven Splitting of Hydrogen Sulfide.
    Jing X; Yang Y; He C; Chang Z; Reek JNH; Duan C
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11759-11763. PubMed ID: 28722265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Photo-Driven Hydrogenation Reaction of an NAD
    Ohtsu H; Saito T; Tsuge K
    Front Chem; 2019; 7():580. PubMed ID: 31482088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DHPA-Containing Cobalt-Based Redox Metal-Organic Cyclohelicates as Enzymatic Molecular Flasks for Light-Driven H
    Zhao L; Wang J; Wu P; He C; Guo X; Duan C
    Sci Rep; 2017 Oct; 7(1):14347. PubMed ID: 29085048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation.
    Wei J; Zhao L; He C; Zheng S; Reek JNH; Duan C
    J Am Chem Soc; 2019 Aug; 141(32):12707-12716. PubMed ID: 31319035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Urine-Fueled Light-Driven NADH Regeneration for Redox Biocatalysis.
    Choi WS; Lee SH; Ko JW; Park CB
    ChemSusChem; 2016 Jul; 9(13):1559-64. PubMed ID: 27198582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulated Dye in Coordination-Assembled Octahedron for Visible-Light-Driven Proton Reduction and Nitroaromatic Hydrogenation.
    Li J; Wang J; Li H; Wen X; He C
    Inorg Chem; 2024 May; 63(18):8237-8243. PubMed ID: 38639568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation.
    Chen QA; Gao K; Duan Y; Ye ZS; Shi L; Yang Y; Zhou YG
    J Am Chem Soc; 2012 Feb; 134(4):2442-8. PubMed ID: 22239152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light.
    Emmanuel MA; Greenberg NR; Oblinsky DG; Hyster TK
    Nature; 2016 Dec; 540(7633):414-417. PubMed ID: 27974767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Biomimetic Cofactors According to Stability, Redox Potentials, and Enzymatic Conversion by NADH Oxidase from Lactobacillus pentosus.
    Nowak C; Pick A; Csepei LI; Sieber V
    Chembiochem; 2017 Oct; 18(19):1944-1949. PubMed ID: 28752634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers.
    Shim Y; Young RM; Douvalis AP; Dyar SM; Yuhas BD; Bakas T; Wasielewski MR; Kanatzidis MG
    J Am Chem Soc; 2014 Sep; 136(38):13371-80. PubMed ID: 25162793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jan; 134(1):367-74. PubMed ID: 22122737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoenzymatic Hydrogen Production from Methanol through the Interplay of Metal Complexes and Biocatalysts.
    Tavakoli G; Armstrong JE; Naapuri JM; Deska J; Prechtl MHG
    Chemistry; 2019 May; 25(26):6474-6481. PubMed ID: 30648769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.
    Orain C; Quentel F; Gloaguen F
    ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized Metal-organic Framework for NADH Regeneration by Hydrogen in a Redox Flow Bioreactor.
    Li F; Hosseini WE; Zhu Q; Zhang L; Yang W; Etienne M
    Chemistry; 2024 Aug; ():e202401893. PubMed ID: 39115035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.