These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 28631861)
21. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
22. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Zhao M; Ou S; Wu CD Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017 [TBL] [Abstract][Full Text] [Related]
23. Supramolecular modeling of mono-copper enzyme active sites with calix[6]arene-based funnel complexes. Le Poul N; Le Mest Y; Jabin I; Reinaud O Acc Chem Res; 2015 Jul; 48(7):2097-106. PubMed ID: 26103534 [TBL] [Abstract][Full Text] [Related]
24. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578 [TBL] [Abstract][Full Text] [Related]
25. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Wulff G; Liu J Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389 [TBL] [Abstract][Full Text] [Related]
26. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Syntrivanis LD; Tiefenbacher K Angew Chem Int Ed Engl; 2024 Sep; ():e202412622. PubMed ID: 39295476 [TBL] [Abstract][Full Text] [Related]
27. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase. Jing Q; Okrasa K; Kazlauskas RJ Chemistry; 2009; 15(6):1370-6. PubMed ID: 19115310 [TBL] [Abstract][Full Text] [Related]
28. Functionalized Metal-Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. Chen J; Zhang Z; Bao Z; Su Y; Xing H; Yang Q; Ren Q ACS Appl Mater Interfaces; 2017 Mar; 9(11):9772-9777. PubMed ID: 28248485 [TBL] [Abstract][Full Text] [Related]
29. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities. Heinisch T; Ward TR Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561 [TBL] [Abstract][Full Text] [Related]
30. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095 [TBL] [Abstract][Full Text] [Related]
31. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
32. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908 [TBL] [Abstract][Full Text] [Related]
33. "Click" dendrimers: synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Ornelas C; Aranzaes JR; Salmon L; Astruc D Chemistry; 2008; 14(1):50-64. PubMed ID: 18058786 [TBL] [Abstract][Full Text] [Related]
34. Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection. Lee KS; Won MS; Noh HB; Shim YB Biomaterials; 2010 Oct; 31(30):7827-35. PubMed ID: 20659764 [TBL] [Abstract][Full Text] [Related]
35. Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Liu G; Meng X; Zhang H; Zhao G; Pang H; Wang T; Li P; Kako T; Ye J Angew Chem Int Ed Engl; 2017 May; 56(20):5570-5574. PubMed ID: 28338279 [TBL] [Abstract][Full Text] [Related]
36. Catalytic hyperbranched polymers as enzyme mimics; exploiting the principles of encapsulation and supramolecular chemistry. Kirkorian K; Ellis A; Twyman LJ Chem Soc Rev; 2012 Sep; 41(18):6138-59. PubMed ID: 22850803 [TBL] [Abstract][Full Text] [Related]
37. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Wen F; Li C Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891 [TBL] [Abstract][Full Text] [Related]
38. New approaches to NAD(P)H regeneration in the biosynthesis systems. Han L; Liang B World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299 [TBL] [Abstract][Full Text] [Related]
39. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water. Maenaka Y; Suenobu T; Fukuzumi S J Am Chem Soc; 2012 Jun; 134(22):9417-27. PubMed ID: 22577897 [TBL] [Abstract][Full Text] [Related]
40. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction. Jing X; He C; Yang Y; Duan C J Am Chem Soc; 2015 Mar; 137(11):3967-74. PubMed ID: 25738748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]