These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 28632040)

  • 21. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization.
    Blomgran R; Zheng L; Stendahl O
    J Leukoc Biol; 2007 May; 81(5):1213-23. PubMed ID: 17264306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. P2X7 Receptor Triggers Lysosomal Leakage Through Calcium Mobilization in a Mechanism Dependent on Pannexin-1 Hemichannels.
    Santos SACS; Persechini PM; Henriques-Santos BM; Bello-Santos VG; Castro NG; Costa de Sousa J; Genta FA; Santiago MF; Coutinho-Silva R; Savio LEB; Kurtenbach E
    Front Immunol; 2022; 13():752105. PubMed ID: 35222364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review.
    Wu S; Gaillard JF; Gray KA
    Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Systematic Review of Reported Exposure to Engineered Nanomaterials.
    Debia M; Bakhiyi B; Ostiguy C; Verbeek JH; Brouwer DH; Murashov V
    Ann Occup Hyg; 2016 Oct; 60(8):916-35. PubMed ID: 27422281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysosomal membrane permeabilization and cell death.
    Wang F; Gómez-Sintes R; Boya P
    Traffic; 2018 Dec; 19(12):918-931. PubMed ID: 30125440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding workplace processes and factors that influence exposures to engineered nanomaterials.
    Woskie SR; Bello D; Virji MA; Stefaniak AB
    Int J Occup Environ Health; 2010; 16(4):365-77. PubMed ID: 21222381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes.
    Oberle C; Huai J; Reinheckel T; Tacke M; Rassner M; Ekert PG; Buellesbach J; Borner C
    Cell Death Differ; 2010 Jul; 17(7):1167-78. PubMed ID: 20094062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials.
    You DJ; Bonner JC
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33022979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processes.
    Ding Y; Kuhlbusch TAJ; Van Tongeren M; Jiménez AS; Tuinman I; Chen R; Alvarez IL; Mikolajczyk U; Nickel C; Meyer J; Kaminski H; Wohlleben W; Stahlmecke B; Clavaguera S; Riediker M
    J Hazard Mater; 2017 Jan; 322(Pt A):17-28. PubMed ID: 27181990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhalation of silver nanomaterials--seeing the risks.
    Theodorou IG; Ryan MP; Tetley TD; Porter AE
    Int J Mol Sci; 2014 Dec; 15(12):23936-74. PubMed ID: 25535082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of Engineered Nanomaterials in Nano-Enabled Products Exhibiting Priority Environmental Exposure.
    Lehutso RF; Tancu Y; Maity A; Thwala M
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lysosomal cysteine cathepsins: signaling pathways in apoptosis.
    Stoka V; Turk V; Turk B
    Biol Chem; 2007 Jun; 388(6):555-60. PubMed ID: 17552902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages.
    Hughes CS; Colhoun LM; Bains BK; Kilgour JD; Burden RE; Burrows JF; Lavelle EC; Gilmore BF; Scott CJ
    Part Fibre Toxicol; 2016 Apr; 13():19. PubMed ID: 27108091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.
    Warheit DB; Donner EM
    Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation.
    Wang X; Reece SP; Brown JM
    Toxicol Mech Methods; 2013 Mar; 23(3):168-77. PubMed ID: 23256453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Health implications of engineered nanomaterials.
    Pietroiusti A
    Nanoscale; 2012 Feb; 4(4):1231-47. PubMed ID: 22278373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of apoptosis-associated lysosomal membrane permeabilization.
    Johansson AC; Appelqvist H; Nilsson C; Kågedal K; Roberg K; Ollinger K
    Apoptosis; 2010 May; 15(5):527-40. PubMed ID: 20077016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicological aspects for nanomaterial in humans.
    Dusinska M; Magdolenova Z; Fjellsbø LM
    Methods Mol Biol; 2013; 948():1-12. PubMed ID: 23070759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.