These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28632051)

  • 1. Quantifying coordination among the rearfoot, midfoot, and forefoot segments during running.
    Takabayashi T; Edama M; Yokoyama E; Kanaya C; Kubo M
    Sports Biomech; 2018 Mar; 17(1):18-32. PubMed ID: 28632051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Kinematic Coupling Among the Rearfoot, Midfoot, and Forefoot Segments During Running and Walking.
    Takabayashi T; Edama M; Yokoyama E; Kanaya C; Inai T; Tokunaga Y; Kubo M
    J Am Podiatr Med Assoc; 2018 Jan; 108(1):45-51. PubMed ID: 29547030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in foot and shank coupling due to alterations in foot strike pattern during running.
    Pohl MB; Buckley JG
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):334-41. PubMed ID: 18006125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination among the rearfoot, midfoot, and forefoot during walking.
    Takabayashi T; Edama M; Nakamura E; Yokoyama E; Kanaya C; Kubo M
    J Foot Ankle Res; 2017; 10():42. PubMed ID: 29021827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait.
    Pohl MB; Messenger N; Buckley JG
    Gait Posture; 2007 Feb; 25(2):295-302. PubMed ID: 16759862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foot pronation during walking is associated to the mechanical resistance of the midfoot joint complex.
    Gomes RBO; Souza TR; Paes BDC; Magalhães FA; Gontijo BA; Fonseca ST; Ocarino JM; Resende RA
    Gait Posture; 2019 May; 70():20-23. PubMed ID: 30780086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running.
    Takabayashi T; Edama M; Nakamura M; Nakamura E; Inai T; Kubo M
    Eur J Sport Sci; 2017 Nov; 17(10):1289-1296. PubMed ID: 28961074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running.
    Monaghan GM; Hsu WH; Lewis CL; Saltzman E; Hamill J; Holt KG
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):936-42. PubMed ID: 25001326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in rearfoot, midfoot, and forefoot kinematics of normal foot and flatfoot during running.
    Takabayashi T; Edama M; Inai T; Kubo M
    J Orthop Res; 2021 Mar; 39(3):565-571. PubMed ID: 33038023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in foot and lower limb coupling due to systematic variations in step width.
    Pohl MB; Messenger N; Buckley JG
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):175-83. PubMed ID: 16269207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Footstrike patterns among novice runners wearing a conventional, neutral running shoe.
    Bertelsen ML; Jensen JF; Nielsen MH; Nielsen RO; Rasmussen S
    Gait Posture; 2013 Jun; 38(2):354-6. PubMed ID: 23280125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-related differences in coordination and variability among foot joints during running.
    Takabayashi T; Edama M; Inai T; Kubo M
    J Foot Ankle Res; 2018; 11():53. PubMed ID: 30237827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.
    Eslami M; Begon M; Farahpour N; Allard P
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):74-80. PubMed ID: 17049700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination Among Shank, Rearfoot, Midfoot and Forefoot Kinematic Movement During Gait in Individuals With Hallux Valgus.
    Kawakami W; Takahashi M; Iwamoto Y; Shinkoda K
    J Appl Biomech; 2019 Feb; 35(1):44–51. PubMed ID: 30207203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot.
    Kelly LA; Farris DJ; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2018 Jan; 50(1):98-108. PubMed ID: 28902682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fore- and rearfoot kinematics in high- and low-arched individuals during running.
    Barnes A; Wheat J; Milner CE
    Foot Ankle Int; 2011 Jul; 32(7):710-6. PubMed ID: 21972767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rearfoot and midfoot or forefoot impacts in habitually shod runners.
    Boyer ER; Rooney BD; Derrick TR
    Med Sci Sports Exerc; 2014 Jul; 46(7):1384-91. PubMed ID: 24300124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.
    Eslami M; Begon M; Hinse S; Sadeghi H; Popov P; Allard P
    J Sci Med Sport; 2009 Nov; 12(6):679-84. PubMed ID: 18768360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forefoot angle determines duration and amplitude of pronation during walking.
    Monaghan GM; Lewis CL; Hsu WH; Saltzman E; Hamill J; Holt KG
    Gait Posture; 2013 May; 38(1):8-13. PubMed ID: 23117096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Select injury-related variables are affected by stride length and foot strike style during running.
    Boyer ER; Derrick TR
    Am J Sports Med; 2015 Sep; 43(9):2310-7. PubMed ID: 26243741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.