These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28632102)

  • 1. Effect of Transient Perturbations of Short-Term Memory on Target-Directed Blind Locomotion.
    Piekarski S; Lajoie Y; Paquet N
    J Mot Behav; 2018; 50(1):2-7. PubMed ID: 28632102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of distance and direction errors associated with forward, backward, and sideway walking in the context of blind navigation.
    Paquet N; Rainville C; Lajoie Y; Tremblay F
    Perception; 2007; 36(4):525-36. PubMed ID: 17564199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of age and obstacles on navigation precision and reaction time during blind navigation in dual-task conditions.
    Richer N; Paquet N; Lajoie Y
    Gait Posture; 2014 Mar; 39(3):835-40. PubMed ID: 24238471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of visual and nonvisual sensory inputs to walked distance in a blind-walking task.
    Ellard CG; Shaughnessy SC
    Perception; 2003; 32(5):567-78. PubMed ID: 12854643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular and vestibulo-proprioceptive perception of motion in the horizontal plane in blindfolded man--I. Estimations of linear displacement.
    Marlinsky VV
    Neuroscience; 1999 May; 90(2):389-94. PubMed ID: 10215144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed linear locomotion in normal and labyrinthine-defective subjects.
    Glasauer S; Amorim MA; Vitte E; Berthoz A
    Exp Brain Res; 1994; 98(2):323-35. PubMed ID: 8050517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of navigation direction on the dual-task of counting backward during blind navigation.
    Paquet N; Lajoie Y; Rainville C; Sabagh-Yazdi F
    Neurosci Lett; 2008 Sep; 442(2):148-51. PubMed ID: 18625287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision.
    Courtine G; Schieppati M
    Eur J Neurosci; 2003 Jul; 18(1):177-90. PubMed ID: 12859351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a multidirectional locomotive dual-task paradigm to evaluate task-related differences in event-related electro-cortical activity.
    Duncan SJ; Gosling A; Panchuk D; Polman RCJ
    Behav Brain Res; 2019 Apr; 361():122-130. PubMed ID: 30583028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed-dependent deviations from a straight-ahead path during forward locomotion in healthy individuals.
    Dickstein R; Ufaz S; Dunsky A; Nadeau S; Abulaffio N
    Am J Phys Med Rehabil; 2005 May; 84(5):330-7. PubMed ID: 15829779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The direction of walking--but not throwing or kicking--is adapted by optic flow.
    Bruggeman H; Warren WH
    Psychol Sci; 2010 Jul; 21(7):1006-13. PubMed ID: 20511390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of visual information does not change the accuracy of distance estimation during a blindfolded walking task.
    Commins S; McCormack K; Callinan E; Fitzgerald H; Molloy E; Young K
    Hum Mov Sci; 2013 Aug; 32(4):794-807. PubMed ID: 23895790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of aging on visual reweighting during locomotion.
    Berard J; Fung J; Lamontagne A
    Clin Neurophysiol; 2012 Jul; 123(7):1422-8. PubMed ID: 22204920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of deprivation of vision and vibrissae on goal-directed locomotion in cats.
    Crémieux J; Veraart C; Wanet-Defalque MC
    Exp Brain Res; 1986; 65(1):229-34. PubMed ID: 3803507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying visual-vestibular contributions during target-directed locomotion.
    Carlsen AN; Kennedy PM; Anderson KG; Cressman EK; Nagelkerke P; Chua R
    Neurosci Lett; 2005 Aug; 384(3):217-21. PubMed ID: 15893425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path integration: is there a difference between athletes and non-athletes?
    Bredin J; Kerlirzin Y; Israël I
    Exp Brain Res; 2005 Dec; 167(4):670-4. PubMed ID: 16292571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.