These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 28632165)

  • 21. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nonlinear Fano effect.
    Kroner M; Govorov AO; Remi S; Biedermann B; Seidl S; Badolato A; Petroff PM; Zhang W; Barbour R; Gerardot BD; Warburton RJ; Karrai K
    Nature; 2008 Jan; 451(7176):311-4. PubMed ID: 18202652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correspondence between entanglement and Fano resonance of surface plasmons.
    Chen GY; Chen YN
    Opt Lett; 2012 Oct; 37(19):4023-5. PubMed ID: 23027266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime.
    Scott Z; Muhammad S; Shahbazyan TV
    J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems.
    Yang WX; Chen AX; Huang Z; Lee RK
    Opt Express; 2015 May; 23(10):13032-40. PubMed ID: 26074556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.
    Sadeghi SM; Hatef A; Fortin-Deschenes S; Meunier M
    Nanotechnology; 2013 May; 24(20):205201. PubMed ID: 23609222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy absorbed from double quantum dot-metal nanoparticle hybrid system.
    Akram H; Abdullah M; Al-Khursan AH
    Sci Rep; 2022 Dec; 12(1):21495. PubMed ID: 36513772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting.
    Zhang B; Liang W
    J Chem Phys; 2020 Jan; 152(1):014102. PubMed ID: 31914739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system.
    Singh MR
    Nanotechnology; 2013 Mar; 24(12):125701. PubMed ID: 23459222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex.
    Cheng MT; Liu SD; Zhou HJ; Hao ZH; Wang QQ
    Opt Lett; 2007 Aug; 32(15):2125-7. PubMed ID: 17671558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO
    Hatef A; Zamani N; Johnston W
    J Phys Condens Matter; 2017 Apr; 29(15):155305. PubMed ID: 28222047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.
    Zhang F; Ren J; Duan X; Chen Z; Gong Q; Gu Y
    J Phys Condens Matter; 2018 Aug; 30(30):305302. PubMed ID: 29897349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum plexcitonics: strongly interacting plasmons and excitons.
    Manjavacas A; García de Abajo FJ; Nordlander P
    Nano Lett; 2011 Jun; 11(6):2318-23. PubMed ID: 21534592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.
    Sadeghi SM
    Opt Lett; 2014 Sep; 39(17):4986-9. PubMed ID: 25166055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.
    Hatef A; Sadeghi SM; Boulais É; Meunier M
    Nanotechnology; 2013 Jan; 24(1):015502. PubMed ID: 23220909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.