BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28632647)

  • 1. High Osteogenic Potential of Adipose- and Muscle-derived Mesenchymal Stem Cells in Spinal-Ossification Model Mice.
    Liu X; Kumagai G; Wada K; Tanaka T; Asari T; Oishi K; Fujita T; Mizukami H; Furukawa KI; Ishibashi Y
    Spine (Phila Pa 1976); 2017 Dec; 42(23):E1342-E1349. PubMed ID: 28632647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression Analysis of Susceptibility Genes for Ossification of the Posterior Longitudinal Ligament of the Cervical Spine in Human OPLL-related Tissues and a Spinal Hyperostotic Mouse (ttw/ttw).
    Nakajima H; Watanabe S; Honjoh K; Okawa A; Matsumoto M; Matsumine A
    Spine (Phila Pa 1976); 2020 Nov; 45(22):E1460-E1468. PubMed ID: 32756283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells in Ossification of the Posterior Longitudinal Ligament Through Activation of the BMP2-Smad1/5/8 Pathway.
    Cai Z; Wu B; Ye G; Liu W; Chen K; Wang P; Xie Z; Li J; Zheng G; Yu W; Su Z; Lin J; Wu Y; Shen H
    Stem Cells Dev; 2020 Dec; 29(24):1567-1576. PubMed ID: 33096960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of teriparatide on ligamentum flavum mesenchymal stem cells isolated from patients with ossification of the posterior longitudinal ligament.
    Araki R; Asari T; Kudo H; Sasaki E; Yamauchi R; Liu X; Wada K; Kumagai G; Sasaki A; Furukawa KI; Ishibashi Y
    J Pharmacol Sci; 2021 Jan; 145(1):23-28. PubMed ID: 33357776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic lineage commitment of mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament.
    Harada Y; Furukawa K; Asari T; Chin S; Ono A; Tanaka T; Mizukami H; Murakami M; Yagihashi S; Motomura S; Ishibashi Y
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1014-20. PubMed ID: 24361881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coagulation, Vascular Morphology, and Vasculogenesis in Spinal Ligament Ossification Model Mice.
    Ichikawa N; Kumagai G; Wada K; Kudo H; Tanaka S; Asari T; Liu X; Sasaki A; Furukawa KI; Ishibashi Y
    Spine (Phila Pa 1976); 2021 Aug; 46(15):E802-E809. PubMed ID: 33337674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of osteogenic differentiation in mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament by a histamine-2-receptor antagonist.
    Liu X; Kumagai G; Wada K; Tanaka T; Fujita T; Sasaki A; Furukawa KI; Ishibashi Y
    Eur J Pharmacol; 2017 Sep; 810():156-162. PubMed ID: 28690192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1.
    Liu N; Zhang Z; Li L; Shen X; Sun B; Wang R; Zhong H; Shi Q; Wei L; Zhang Y; Wang Y; Xu C; Liu Y; Yuan W
    Theranostics; 2020; 10(17):7492-7509. PubMed ID: 32685001
    [No Abstract]   [Full Text] [Related]  

  • 9. Runx2 haploinsufficiency ameliorates the development of ossification of the posterior longitudinal ligament.
    Iwasaki M; Piao J; Kimura A; Sato S; Inose H; Ochi H; Asou Y; Shinomiya K; Okawa A; Takeda S
    PLoS One; 2012; 7(8):e43372. PubMed ID: 22927960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Animal models for bone and joint disease. ttw (tiptoe walking), a model mouse of OPLL (ossification of the posterior longitudinal ligament of the spine)].
    Ikegawa S
    Clin Calcium; 2011 Feb; 21(2):294-300. PubMed ID: 21289427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic differences in the osteogenic differentiation potency according to the classification of ossification of the posterior longitudinal ligament of the cervical spine.
    Kudo H; Furukawa K; Yokoyama T; Ono A; Numasawa T; Wada K; Tanaka S; Asari T; Ueyama K; Motomura S; Toh S
    Spine (Phila Pa 1976); 2011 May; 36(12):951-7. PubMed ID: 21224767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The H2 blocker famotidine suppresses progression of ossification of the posterior longitudinal ligament in a mouse model.
    Maeda Y; Yamamoto K; Yamakawa A; Aini H; Takato T; Chung UI; Ohba S
    RMD Open; 2015; 1(1):e000068. PubMed ID: 26509067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-497-5p inhibit RSPO2 and accelerate OPLL.
    Chen X; Wang S; Cui Z; Gu Y
    Life Sci; 2021 Aug; 279():119481. PubMed ID: 33857573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrin αVβ3 antagonist-c(RGDyk) peptide attenuates the progression of ossification of the posterior longitudinal ligament by inhibiting osteogenesis and angiogenesis.
    Geng X; Tang Y; Gu C; Zeng J; Zhao Y; Zhou Q; Jia L; Zhou S; Chen X
    Mol Med; 2024 May; 30(1):57. PubMed ID: 38698308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy in spinal ligament fibroblasts: evidence and possible implications for ossification of the posterior longitudinal ligament.
    Yang Y; Lin Z; Chen J; Ding S; Mao W; Shi S; Liang B
    J Orthop Surg Res; 2020 Oct; 15(1):490. PubMed ID: 33092625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An immunohistochemical evaluation of extracellular matrix components in the spinal posterior longitudinal ligament and intervertebral disc of the tiptoe walking mouse.
    Hirakawa H; Kusumi T; Nitobe T; Ueyama K; Tanaka M; Kudo H; Toh S; Harata S
    J Orthop Sci; 2004; 9(6):591-7. PubMed ID: 16228677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells.
    Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA
    Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord.
    Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A
    Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament.
    Sugita D; Yayama T; Uchida K; Kokubo Y; Nakajima H; Yamagishi A; Takeura N; Baba H
    Spine (Phila Pa 1976); 2013 Oct; 38(22):E1388-96. PubMed ID: 23883825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ossification of the posterior longitudinal ligament by three-dimensional computed tomography and magnetic resonance imaging.
    Kawaguchi Y; Urushisaki A; Seki S; Hori T; Asanuma Y; Kimura T
    Spine J; 2011 Oct; 11(10):927-32. PubMed ID: 21925953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.