BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 28633062)

  • 21. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation.
    Hustad S; McKinley MC; McNulty H; Schneede J; Strain JJ; Scott JM; Ueland PM
    Clin Chem; 2002 Sep; 48(9):1571-7. PubMed ID: 12194936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin.
    Akiyama T; Selhub J; Rosenberg IH
    J Nutr; 1982 Feb; 112(2):263-8. PubMed ID: 6120218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis.
    Pallotta ML
    Yeast; 2011 Oct; 28(10):693-705. PubMed ID: 21915900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrolysis of flavin adenine dinucleotide and flavin mononucleotide by rabbit blood.
    Okumura M; Yagi K
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(3):231-6. PubMed ID: 7441382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Changes in the content of riboflavin and its coenzyme in tissues during the aging of rats].
    Leclerc J; Miller ML
    Ann Nutr Metab; 1981; 25(1):20-6. PubMed ID: 7259107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
    Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K
    Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers.
    Baier J; Maisch T; Maier M; Engel E; Landthaler M; Bäumler W
    Biophys J; 2006 Aug; 91(4):1452-9. PubMed ID: 16751234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneously quantifying intracellular FAD and FMN using a novel strategy of intrinsic fluorescence four-way calibration.
    Kang C; Wu HL; Xu ML; Yan XF; Liu YJ; Yu RQ
    Talanta; 2019 May; 197():105-112. PubMed ID: 30771910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. YeeO from Escherichia coli exports flavins.
    McAnulty MJ; Wood TK
    Bioengineered; 2014; 5(6):386-92. PubMed ID: 25482085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavin nucleotides in human lens: regional distribution in brunescent cataracts.
    Bhat KS; Nayak S
    Indian J Ophthalmol; 1998 Dec; 46(4):233-7. PubMed ID: 10218307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review.
    Lee TY; Farah N; Chin VK; Lim CW; Chong PP; Basir R; Lim WF; Loo YS
    Nutr Res; 2023 Nov; 119():1-20. PubMed ID: 37708600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aldosterone stimulation of riboflavin incorporation into rat renal flavin coenzymes and the effect of inhibition by riboflavin analogues on sodium reabsorption.
    Trachewsky D
    J Clin Invest; 1978 Dec; 62(6):1325-33. PubMed ID: 748381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial activity of blue high-power light-emitting diode-activated flavin mononucleotide against Staphylococcus aureus biofilm on a sandblasted and etched surface.
    Leelanarathiwat K; Katsuta Y; Katsuragi H; Watanabe F
    Photodiagnosis Photodyn Ther; 2020 Sep; 31():101855. PubMed ID: 32512247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of flavins in ocular tissues of the rabbit.
    Batey DW; Eckhert CD
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1981-5. PubMed ID: 2055692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An investigation of the influence of reactive oxygen species produced from riboflavin-5'-phosphate by blue or violet light on the inhibition of WiDr colon cancer cells.
    Chiu CM; Lee SY; Chen PR; Zhan SQ; Yuann JP; Huang ST; Wu MF; Cheng CW; Chang YC; Liang JY
    Photodiagnosis Photodyn Ther; 2023 Dec; 44():103810. PubMed ID: 37748698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamic responses elicited by systemic injections of flavin adenine dinucleotide in anesthetized rats.
    Hashmi-Hill MP; Graves JE; Sandock K; Bates JN; Robertson TP; Lewis SJ
    J Cardiovasc Pharmacol; 2007 Jul; 50(1):94-102. PubMed ID: 17666921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular reactive oxygen species in monocytes generated by photosensitive chromophores activated with blue light.
    Bouillaguet S; Owen B; Wataha JC; Campo MA; Lange N; Schrenzel J
    Dent Mater; 2008 Aug; 24(8):1070-6. PubMed ID: 18243296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies.
    Beutler E
    J Clin Invest; 1969 Oct; 48(10):1957-66. PubMed ID: 5822598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.
    Popovic A; Wiggins T; Davids LM
    J Photochem Photobiol B; 2015 Aug; 149():249-56. PubMed ID: 26114219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.