BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 28633062)

  • 41. Flavin nucleotides, glutathione reductase and assessment of riboflavin status.
    Schorah CJ; Messenger D
    Int J Vitam Nutr Res; 1975; 45(1):39-50. PubMed ID: 237845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast and effective inactivation of Bacillus atrophaeus endospores using light-activated derivatives of vitamin B2.
    Eichner A; Gollmer A; Späth A; Bäumler W; Regensburger J; König B; Maisch T
    Photochem Photobiol Sci; 2015 Feb; 14(2):387-96. PubMed ID: 25423452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch.
    Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z
    Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of riboflavin deficiency upon concentrations of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in Novikoff hepatoma in rats.
    Rivlin RS; Hornibrook R; Osnos M
    Cancer Res; 1973 Nov; 33(11):3019-23. PubMed ID: 4355989
    [No Abstract]   [Full Text] [Related]  

  • 45. The importance of porphyrins in blue light suppression of Streptococcus agalactiae.
    Bumah VV; Morrow BN; Cortez PM; Bowman CR; Rojas P; Masson-Meyers DS; Suprapto J; Tong WG; Enwemeka CS
    J Photochem Photobiol B; 2020 Nov; 212():111996. PubMed ID: 32863128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential hydrolysis of FAD by ecto-5' nucleotidase CD73 and alkaline phosphatase is required for uptake of vitamin B
    Shichinohe N; Kobayashi D; Izumi A; Hatanaka K; Fujita R; Kinoshita T; Inoue N; Hamaue N; Wada K; Murakami Y
    J Biol Chem; 2022 Dec; 298(12):102640. PubMed ID: 36309091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane.
    Daniel H; Binninger E; Rehner G
    Int J Vitam Nutr Res; 1983; 53(1):109-14. PubMed ID: 6853053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulatory mechanisms of 6,7-dimethyl-8-ribityllumazine formation in resting cells of a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2005 Aug; 51(4):271-3. PubMed ID: 16262000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness.
    Vasilaki AT; McMillan DC; Kinsella J; Duncan A; O'Reilly DS; Talwar D
    Clin Chim Acta; 2010 Nov; 411(21-22):1750-5. PubMed ID: 20667447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis.
    Covington ED; Gelbmann CB; Kotloski NJ; Gralnick JA
    Mol Microbiol; 2010 Oct; 78(2):519-32. PubMed ID: 20807196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stabilization of flavin mononucleotide by capturing its "tail" with porous organic polymers for long-term photocatalytic degradation of micropollutants.
    Tang P; Ji B; Sun G
    J Hazard Mater; 2022 Aug; 435():128982. PubMed ID: 35472536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of adenine in fast excited-state deactivation of FAD: a femtosecond mid-IR transient absorption study.
    Li G; Glusac KD
    J Phys Chem B; 2009 Jul; 113(27):9059-61. PubMed ID: 19527046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies.
    Tolomeo M; Nisco A; Barile M
    Methods Mol Biol; 2021; 2280():275-295. PubMed ID: 33751442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production.
    Liu S; Diao N; Wang Z; Lu W; Tang YJ; Chen T
    J Agric Food Chem; 2019 Jun; 67(23):6532-6540. PubMed ID: 31099250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calorimetric studies of flavin-binding proteins: FMN and FAD binding to hen egg riboflavin-binding proteins.
    Nowak HP; Langerman N
    Arch Biochem Biophys; 1982 Mar; 214(1):231-8. PubMed ID: 7081998
    [No Abstract]   [Full Text] [Related]  

  • 57. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Blue light-induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures.
    Lee JB; Kim SH; Lee SC; Kim HG; Ahn HG; Li Z; Yoon KC
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4119-27. PubMed ID: 24925877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conversion of FAD to FMN and riboflavin in plasma: effects of measuring method.
    Akimoto M; Sato Y; Okubo T; Todo H; Hasegawa T; Sugibayashi K
    Biol Pharm Bull; 2006 Aug; 29(8):1779-82. PubMed ID: 16880644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.