These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28633078)

  • 1. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill.
    Chen Q; Zhang Q; Fourie A; Xin C
    J Environ Manage; 2017 Oct; 201():19-27. PubMed ID: 28633078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium slag and fly ash-based binder for cemented fine tailings backfill.
    He Y; Chen Q; Qi C; Zhang Q; Xiao C
    J Environ Manage; 2019 Oct; 248():109282. PubMed ID: 31374435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Iron Tailings for Phosphate Removal in Cemented Phosphogypsum (PG) Backfill.
    Shi Y; Wang X; Qing Z; Song Y; Min J; Zhou Y; Du J; Wang S
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of partial cement substitution by ground blast furnace slag on the mechanical properties of phosphogypsum cemented backfill.
    Chen G; Yao N; Ye Y; Fu F; Hu N; Zhang Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102972-102985. PubMed ID: 37676458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.
    Yılmaz T; Ercikdi B; Karaman K; Külekçi G
    Ultrasonics; 2014 Jul; 54(5):1386-94. PubMed ID: 24602334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of overflow tailings properties on cemented paste backfill.
    Chen X; Shi X; Zhou J; Du X; Chen Q; Qiu X
    J Environ Manage; 2019 Apr; 235():133-144. PubMed ID: 30682665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.
    Ercikdi B; Baki H; İzki M
    J Environ Manage; 2013 Jan; 115():5-13. PubMed ID: 23220652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium Slag and Solid Waste-Based Binders for Cemented Lithium Mica Fine Tailings Backfill.
    Li J; Huang J; Hu Y; Zhu D
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength development and self-desiccation of saline cemented paste backfill.
    Carnogursky EA; Fall M; Haruna S
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14894-14911. PubMed ID: 38286929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature.
    Jiang H; Yi H; Yilmaz E; Liu S; Qiu J
    Ultrasonics; 2020 Jan; 100():105983. PubMed ID: 31479971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled effects of fly ash and calcium formate on strength development of cemented tailings backfill.
    Miao X; Wu J; Wang Y; Ma D; Pu H
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):59949-59964. PubMed ID: 35411521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.
    Yılmaz T; Ercikdi B; Deveci H
    J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength and ultrasonic properties of cemented paste backfill.
    Ercikdi B; Yılmaz T; Külekci G
    Ultrasonics; 2014 Jan; 54(1):195-204. PubMed ID: 23706262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2010 Jul; 179(1-3):940-6. PubMed ID: 20382473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm.
    Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique.
    Shi Y; Gan L; Li X; He S; Sun C; Gao L
    Chemosphere; 2018 Feb; 192():354-361. PubMed ID: 29121565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of modified copper slag activated by Na
    Chen Q; Tao Y; Feng Y; Zhang Q; Liu Y
    J Environ Manage; 2021 Jul; 290():112608. PubMed ID: 33901826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill.
    Zhou S; Li X; Zhou Y; Min C; Shi Y
    J Hazard Mater; 2020 Nov; 399():122993. PubMed ID: 32521317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Cr(VI)-containing tailings by using slag-cementing materials for cemented paste backfill: influence of sulfate and limestone addition.
    Zhao L
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):91984-91996. PubMed ID: 37479941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a New Type of Cemented Paste Backfill with an Alkali-Activated Silica Fume and Slag Composite Binder.
    Sun Q; Li T; Liang B
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31941130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.