These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28633081)

  • 1. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.
    Li S; Liu Q; Chen X; Huang J; Li J
    J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flame deflagration in side-on vented detonation tubes: A large scale study.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2018 Mar; 345():38-47. PubMed ID: 29128725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Sep; 338():334-342. PubMed ID: 28582714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Oct; 339():301-309. PubMed ID: 28658639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Determination of reaction products of epoxypropane in the process of deflagration to detonation transition by emission spectroscopy].
    Li P; Hu D; Yuan CY; Xiao HB; Liu JC; Sun ZM; Dong S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1916-9. PubMed ID: 16544471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation.
    Lemarchand A; Nowakowski B; Dumazer G; Antoine C
    J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist.
    Cao X; Ren J; Bi M; Zhou Y; Li Y
    J Hazard Mater; 2017 Feb; 324(Pt B):489-497. PubMed ID: 27843023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation of TNT and Destex explosion effects using water mist.
    Willauer HD; Ananth R; Farley JP; Williams FW
    J Hazard Mater; 2009 Jun; 165(1-3):1068-73. PubMed ID: 19097694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast spin avalanches in crystals of nanomagnets in terms of magnetic detonation.
    Modestov M; Bychkov V; Marklund M
    Phys Rev Lett; 2011 Nov; 107(20):207208. PubMed ID: 22181769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Hydrogen Blending Ratio and Equivalence Ratio on the Dynamic Characteristics of Deflagration Shock Waves of CH
    Liu Q; Liu Z; Peng S; Liu C; Liu C; Liu L; Zhou R; Zhi S; Fan T; Li P
    ACS Omega; 2024 Jun; 9(22):23853-23863. PubMed ID: 38854566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy.
    Pang L; Wang C; Han M; Xu Z
    J Hazard Mater; 2015 Dec; 299():174-80. PubMed ID: 26124063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-assisted ignition and deflagration-to-detonation transition.
    Starikovskiy A; Aleksandrov N; Rakitin A
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):740-73. PubMed ID: 22213667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Fluid Dynamic Investigation of Inhomogeneous Hydrogen Flame Acceleration and Transition to Detonation.
    Khodadadi Azadboni R; Heidari A; Wen JX
    Flow Turbul Combust; 2018; 101(4):1009-1021. PubMed ID: 30613185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on shock wave driving technology of methane explosion.
    Huang CY; Liu F; Xin K; Gao YH; Duan YP
    Sci Rep; 2024 Jun; 14(1):14897. PubMed ID: 38942899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material.
    Wang Q; Chang W; Liu S; Li Z; Zhu K
    RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.
    Gauthier P; Chaland F; Masse L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055401. PubMed ID: 15600681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detonation wave driven by condensation of supersaturated carbon vapor.
    Emelianov A; Eremin A; Fortov V; Jander H; Makeich A; Wagner HG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):035303. PubMed ID: 19392009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.