These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28633117)

  • 1. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field.
    Luo X; Yan H; Huang X; Yang D; Wang J; He L
    J Colloid Interface Sci; 2017 Nov; 505():460-466. PubMed ID: 28633117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakups of an encapsulated surfactant-laden aqueous droplet under a DC electric field.
    Abbasi MS; Song R; Lee J
    Soft Matter; 2019 Nov; 15(43):8905-8911. PubMed ID: 31621746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations.
    Skartlien R; Sollum E; Schumann H
    J Chem Phys; 2013 Nov; 139(17):174901. PubMed ID: 24206328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on Transient Oscillation of Droplet Deformation before Conical Breakup under Alternating Current Electric Field.
    Yan H; He L; Luo X; Wang J; Huang X; Lü Y; Yang D
    Langmuir; 2015 Aug; 31(30):8275-83. PubMed ID: 26138311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-emulsion droplet stretching under direct current electric field.
    Abbasi MS; Song R; Kim SM; Kim H; Lee J
    Soft Matter; 2019 Mar; 15(11):2328-2335. PubMed ID: 30688346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling Partial Coalescence Between Droplet and Oil-Water Interface in Water-in-Oil Emulsions under a Direct-Current Electric Field via Molecular Dynamics Simulation.
    Li N; Pang Y; Sun Z; Sun X; Li W; Sun Y; Zhu L; Li B; Wang Z; Zeng H
    Langmuir; 2024 Mar; 40(11):5992-6003. PubMed ID: 38445586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulsions in external electric fields.
    Sjöblom J; Mhatre S; Simon S; Skartlien R; Sørland G
    Adv Colloid Interface Sci; 2021 Aug; 294():102455. PubMed ID: 34102389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Jun; 310(2):590-8. PubMed ID: 17321537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Demulsification Using Ultralow Voltage-Based Electrocoalescence.
    Srivastava A; Karthick S; Jayaprakash KS; Sen AK
    Langmuir; 2018 Jan; 34(4):1520-1527. PubMed ID: 29236503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.
    Henry JV; Fryer PJ; Frith WJ; Norton IT
    J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of bulk elasticity and interfacial tension on the deformation of gelled water-in-oil emulsion droplets: an AFM study.
    Filip D; Uricanu VI; Duits MH; Agterof WG; Mellema J
    Langmuir; 2005 Jan; 21(1):115-26. PubMed ID: 15620292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant and dilatational viscosity effects on the deformation of liquid droplets in an electric field.
    Han Y; Koplik J; Maldarelli C
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):900-911. PubMed ID: 34560389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Jun; 21(13):5722-30. PubMed ID: 15952815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.
    Li M; Li D
    Adv Colloid Interface Sci; 2016 Oct; 236():142-51. PubMed ID: 27545649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial behavior of surfactant-covered double emulsion in extensional flow.
    Lee HM; Choi SB; Kim JH; Lee JS
    Phys Rev E; 2020 Nov; 102(5-1):053104. PubMed ID: 33327103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.