BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28633295)

  • 1. Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus.
    Ployet R; Soler M; Carocha V; Ladouce N; Alves A; Rodrigues JC; Harvengt L; Marque C; Teulières C; Grima-Pettenati J; Mounet F
    Tree Physiol; 2018 Mar; 38(3):409-422. PubMed ID: 28633295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood Architecture and Composition Are Deeply Remodeled in Frost Sensitive
    Cao PB; Ployet R; Nguyen C; Dupas A; Ladouce N; Martinez Y; Grima-Pettenati J; Marque C; Mounet F; Teulières C
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32344718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.
    Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J
    Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus.
    Camargo EL; Nascimento LC; Soler M; Salazar MM; Lepikson-Neto J; Marques WL; Alves A; Teixeira PJ; Mieczkowski P; Carazzolle MF; Martinez Y; Deckmann AC; Rodrigues JC; Grima-Pettenati J; Pereira GA
    BMC Plant Biol; 2014 Sep; 14():256. PubMed ID: 25260963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation.
    Soler M; Plasencia A; Larbat R; Pouzet C; Jauneau A; Rivas S; Pesquet E; Lapierre C; Truchet I; Grima-Pettenati J
    New Phytol; 2017 Jan; 213(1):287-299. PubMed ID: 27500520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.
    MacMillan CP; Birke H; Chuah A; Brill E; Tsuji Y; Ralph J; Dennis ES; Llewellyn D; Pettolino FA
    BMC Genomics; 2017 Jul; 18(1):539. PubMed ID: 28720072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development.
    Laubscher M; Brown K; Tonfack LB; Myburg AA; Mizrachi E; Hussey SG
    Sci Rep; 2018 Jul; 8(1):10983. PubMed ID: 30030488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.
    Yu H; Soler M; San Clemente H; Mila I; Paiva JA; Myburg AA; Bouzayen M; Grima-Pettenati J; Cassan-Wang H
    Plant Cell Physiol; 2015 Apr; 56(4):700-14. PubMed ID: 25577568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.
    Mizrachi E; Maloney VJ; Silberbauer J; Hefer CA; Berger DK; Mansfield SD; Myburg AA
    New Phytol; 2015 Jun; 206(4):1351-63. PubMed ID: 25388807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of co-expression network based on natural expression variation of xylogenesis-related transcripts in Eucalyptus tereticornis.
    Dharanishanthi V; Dasgupta MG
    Mol Biol Rep; 2016 Oct; 43(10):1129-46. PubMed ID: 27465117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcript profiling of Eucalyptus xylem genes during tension wood formation.
    Paux E; Carocha V; Marques C; Mendes de Sousa A; Borralho N; Sivadon P; Grima-Pettenati J
    New Phytol; 2005 Jul; 167(1):89-100. PubMed ID: 15948833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harder, better, faster, stronger: Frost tolerance of Eucalyptus benthamii under cold acclimation.
    Oberschelp GPJ; Morales LL; Montecchiarini ML; Harrand L; Podestá FE; Margarit E
    Plant Physiol Biochem; 2022 Sep; 186():64-75. PubMed ID: 35810688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions.
    Cassan-Wang H; Soler M; Yu H; Camargo EL; Carocha V; Ladouce N; Savelli B; Paiva JA; Leplé JC; Grima-Pettenati J
    Plant Cell Physiol; 2012 Dec; 53(12):2101-16. PubMed ID: 23161857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis.
    Lepikson-Neto J; Nascimento LC; Salazar MM; Camargo EL; Cairo JP; Teixeira PJ; Marques WL; Squina FM; Mieczkowski P; Deckmann AC; Pereira GA
    BMC Plant Biol; 2014 Nov; 14():301. PubMed ID: 25407319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues.
    Wierzbicki MP; Christie N; Pinard D; Mansfield SD; Mizrachi E; Myburg AA
    New Phytol; 2019 Sep; 223(4):1952-1972. PubMed ID: 31144333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis.
    Goicoechea M; Lacombe E; Legay S; Mihaljevic S; Rech P; Jauneau A; Lapierre C; Pollet B; Verhaegen D; Chaubet-Gigot N; Grima-Pettenati J
    Plant J; 2005 Aug; 43(4):553-67. PubMed ID: 16098109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special trends in CBF and DREB2 groups in Eucalyptus gunnii vs Eucalyptus grandis suggest that CBF are master players in the trade-off between growth and stress resistance.
    Nguyen HC; Cao PB; San Clemente H; Ployet R; Mounet F; Ladouce N; Harvengt L; Marque C; Teulieres C
    Physiol Plant; 2017 Apr; 159(4):445-467. PubMed ID: 27861954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties.
    Sousa AO; Camillo LR; Assis ETCM; Lima NS; Silva GO; Kirch RP; Silva DC; Ferraz A; Pasquali G; Costa MGC
    Planta; 2020 Sep; 252(3):45. PubMed ID: 32880001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis.
    Carocha V; Soler M; Hefer C; Cassan-Wang H; Fevereiro P; Myburg AA; Paiva JA; Grima-Pettenati J
    New Phytol; 2015 Jun; 206(4):1297-313. PubMed ID: 25684249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.