BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 28633304)

  • 1. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater.
    Nakajima K; Tanaka A; Matsuda Y
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1767-72. PubMed ID: 23297242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.
    Hopkinson BM
    Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana.
    Nawaly H; Tanaka A; Toyoshima Y; Tsuji Y; Matsuda Y
    Photosynth Res; 2023 May; 156(2):217-229. PubMed ID: 36862281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum.
    Li M; Young JN
    Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms.
    Nigishi M; Shimakawa G; Yamagishi K; Amano R; Ito S; Tsuji Y; Nagasato C; Matsuda Y
    Plant Physiol; 2024 May; 195(2):1432-1445. PubMed ID: 38478576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple plasma membrane SLC4s contribute to external HCO3- acquisition during CO2 starvation in the marine diatom Phaeodactylum tricornutum.
    Nawaly H; Matsui H; Tsuji Y; Iwayama K; Ohashi H; Nakajima K; Matsuda Y
    J Exp Bot; 2023 Jan; 74(1):296-307. PubMed ID: 36124754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA.
    Del Prete S; Vullo D; De Luca V; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2014 Dec; 29(6):906-11. PubMed ID: 24456295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.