BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 28633523)

  • 1. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.
    Spark AJ; Law DW; Ward LP; Cole IS; Best AS
    Environ Sci Technol; 2017 Aug; 51(15):8501-8509. PubMed ID: 28633523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Pseudomonas fluorescens FSYZ01 on the corrosion behavior of Q235B carbon steel in oilfield produced water.
    Liang L; Ren Y; Tian Y; Garcí JAA; Zhang P; Zhu X
    Environ Sci Pollut Res Int; 2023 May; 30(22):62590-62601. PubMed ID: 36947376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion behavior and interaction of mixed bacteria on carbon steel in reclaimed water.
    Chu Y; Xu P; Ou Y; Bai P; Wei Z
    Sci Total Environ; 2020 May; 718():136679. PubMed ID: 32092508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099.
    Li Y; Shi X; Li J; Zeng Y; Shen M; Yan W; Yang K
    Arch Microbiol; 2022 May; 204(6):299. PubMed ID: 35513559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: corrosion behavior, corrosion product, and microbial community structure.
    Hua W; Sun R; Wang X; Zhang Y; Li J; Qiu R; Gao Y
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4269-4279. PubMed ID: 38097840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy.
    Giorgi-Pérez AM; Arboleda-Ordoñez AM; Villamizar-Suárez W; Cardeñosa-Mendoza M; Jaimes-Prada R; Rincón-Orozco B; Niño-Gómez ME
    Bioelectrochemistry; 2021 Oct; 141():107868. PubMed ID: 34126368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO
    Eduok U; Ohaeri E; Szpunar J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110095. PubMed ID: 31546354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.
    Javed MA; Neil WC; Stoddart PR; Wade SA
    Biofouling; 2016; 32(1):109-22. PubMed ID: 26785935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early corrosion behavior of X80 pipeline steel in a simulated soil solution containing Desulfovibrio desulfuricans.
    Fan Y; Chen C; Zhang Y; Liu H; Liu H; Liu H
    Bioelectrochemistry; 2021 Oct; 141():107880. PubMed ID: 34229181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.
    Ashassi-Sorkhabi H; Moradi-Haghighi M; Zarrini G; Javaherdashti R
    Biodegradation; 2012 Feb; 23(1):69-79. PubMed ID: 21695454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm.
    Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D
    Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Pseudomonas sp. on simulated tidal corrosion of X80 pipeline steel.
    Zhou X; Su H; Wang Q; Zhong Z; Li Z; Wu T
    Bioelectrochemistry; 2023 Apr; 150():108359. PubMed ID: 36577201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution.
    Fu Q; Xu J; Wei B; Qin Q; Bai Y; Yu C; Sun C
    Bioelectrochemistry; 2022 Jun; 145():108051. PubMed ID: 35065376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil.
    Liu B; Sun M; Lu F; Du C; Li X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111356. PubMed ID: 33007505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria
    Cai D; Wu J; Chai K
    ACS Omega; 2021 Feb; 6(5):3780-3790. PubMed ID: 33585757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.
    Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K
    Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.