These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28633977)

  • 1. Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models.
    Gray KM; Stroka KM
    Semin Cell Dev Biol; 2017 Nov; 71():106-117. PubMed ID: 28633977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays.
    Bianchi E; Molteni R; Pardi R; Dubini G
    J Biomech; 2013 Jan; 46(2):276-83. PubMed ID: 23200903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model.
    Zhao P; Liu X; Zhang X; Wang L; Su H; Wang L; He N; Zhang D; Li Z; Kang H; Sun A; Chen Z; Zhou L; Wang M; Zhang Y; Deng X; Fan Y
    Lab Chip; 2021 Jan; 21(2):421-434. PubMed ID: 33351007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
    Li L; Lv X; Ostrovidov S; Shi X; Zhang N; Liu J
    Mol Pharm; 2014 Jul; 11(7):2009-15. PubMed ID: 24673554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.
    Li Y; Zhu K; Liu X; Zhang YS
    Curr Drug Metab; 2018; 19(2):100-109. PubMed ID: 28952434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems.
    Zheng F; Fu F; Cheng Y; Wang C; Zhao Y; Gu Z
    Small; 2016 May; 12(17):2253-82. PubMed ID: 26901595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Organ-on-a-Chip Systems for Vascular Diseases.
    Shakeri A; Wang Y; Zhao Y; Landau S; Perera K; Lee J; Radisic M
    Arterioscler Thromb Vasc Biol; 2023 Dec; 43(12):2241-2255. PubMed ID: 37823265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis.
    Boldock L; Wittkowske C; Perrault CM
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28164414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing Living Tissues with Microfluidics.
    Zheng W; Jiang X
    Acc Chem Res; 2018 Dec; 51(12):3166-3173. PubMed ID: 30456942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin.
    Sutterby E; Thurgood P; Baratchi S; Khoshmanesh K; Pirogova E
    Small; 2020 Oct; 16(39):e2002515. PubMed ID: 33460277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals.
    Anderson EJ; Knothe Tate ML
    Tissue Eng; 2007 Oct; 13(10):2525-38. PubMed ID: 17822359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology.
    Doherty EL; Aw WY; Hickey AJ; Polacheck WJ
    Front Bioeng Biotechnol; 2021; 9():624435. PubMed ID: 33614613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear mechanosensing of the aortic endothelium in health and disease.
    Mannion AJ; Holmgren L
    Dis Model Mech; 2023 Oct; 16(10):. PubMed ID: 37909406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.