These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28634053)

  • 1. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb.
    Spirhanzlova P; De Groef B; Nicholson FE; Grommen SVH; Marras G; Sébillot A; Demeneix BA; Pallud-Mothré S; Lemkine GF; Tindall AJ; Du Pasquier D
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Oct; 200():52-58. PubMed ID: 28634053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
    Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Thyroid Disrupting Chemicals In Vivo Using Xenopus laevis.
    Mughal BB; Demeneix BA; Fini JB
    Methods Mol Biol; 2018; 1801():183-192. PubMed ID: 29892825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna.
    Palma P; Palma VL; Matos C; Fernandes RM; Bohn A; Soares AM; Barbosa IR
    Chemosphere; 2009 Jul; 76(3):335-40. PubMed ID: 19403157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption.
    Schiller V; Zhang X; Hecker M; Schäfers C; Fischer R; Fenske M
    Aquat Toxicol; 2014 Oct; 155():62-72. PubMed ID: 24992288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous leaf extracts display endocrine activities in vitro and disrupt sexual differentiation of male Xenopus laevis tadpoles in vivo.
    Hermelink B; Urbatzka R; Wiegand C; Pflugmacher S; Lutz I; Kloas W
    Gen Comp Endocrinol; 2010 Sep; 168(2):245-55. PubMed ID: 20226786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles.
    Yost AT; Thornton LM; Venables BJ; Sellin Jeffries MK
    Environ Toxicol Pharmacol; 2016 Dec; 48():237-244. PubMed ID: 27838513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening for (anti)androgenic properties using a standard operation protocol based on the human stably transfected androgen sensitive PALM cell line. First steps towards validation.
    Freyberger A; Witters H; Weimer M; Lofink W; Berckmans P; Ahr HJ
    Reprod Toxicol; 2010 Aug; 30(1):9-17. PubMed ID: 19836445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of metolachlor on transcription of thyroid system-related genes in juvenile and adult Japanese medaka (Oryzias latipes).
    Jin Y; Chen R; Wang L; Liu J; Yang Y; Zhou C; Liu W; Fu Z
    Gen Comp Endocrinol; 2011 Feb; 170(3):487-93. PubMed ID: 21081129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative embryonic and larval developmental responses of estuarine shrimp (Palaemonetes pugio) to the juvenile hormone agonist fenoxycarb.
    McKenney CL; Cripe GM; Foss SS; Tuberty SR; Hoglund M
    Arch Environ Contam Toxicol; 2004 Nov; 47(4):463-70. PubMed ID: 15499496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence.
    Orton F; Lutz I; Kloas W; Routledge EJ
    Environ Sci Technol; 2009 Mar; 43(6):2144-50. PubMed ID: 19368227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the Xenopus eleutheroembryonic thyroid assay compares to the amphibian metamorphosis assay for detecting thyroid active chemicals.
    Du Pasquier D; Salinier B; Coady KK; Jones A; Körner O; LaRocca J; Lemkine G; Robin-Duchesne B; Weltje L; Wheeler JR; Lagadic L
    Regul Toxicol Pharmacol; 2024 May; 149():105619. PubMed ID: 38614220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroid effects of endocrine disrupting chemicals.
    Boas M; Feldt-Rasmussen U; Main KM
    Mol Cell Endocrinol; 2012 May; 355(2):240-8. PubMed ID: 21939731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles.
    Opitz R; Hartmann S; Blank T; Braunbeck T; Lutz I; Kloas W
    Toxicol Sci; 2006 Apr; 90(2):337-48. PubMed ID: 16396842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo endocrine disruption assessment of wastewater treatment plant effluents with small organisms.
    Castillo L; Seriki K; Mateos S; Loire N; Guédon N; Lemkine GF; Demeneix BA; Tindall AJ
    Water Sci Technol; 2013; 68(1):261-8. PubMed ID: 23823564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos.
    Fini JB; Mughal BB; Le Mével S; Leemans M; Lettmann M; Spirhanzlova P; Affaticati P; Jenett A; Demeneix BA
    Sci Rep; 2017 Mar; 7():43786. PubMed ID: 28266608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat.
    Wolf C; Lambright C; Mann P; Price M; Cooper RL; Ostby J; Gray LE
    Toxicol Ind Health; 1999; 15(1-2):94-118. PubMed ID: 10188194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture.
    Ghisari M; Long M; Tabbo A; Bonefeld-Jørgensen EC
    Toxicol Appl Pharmacol; 2015 May; 284(3):292-303. PubMed ID: 25684042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile.
    Haselman JT; Sakurai M; Watanabe N; Goto Y; Onishi Y; Ito Y; Onoda Y; Kosian PA; Korte JJ; Johnson RD; Iguchi T; Degitz SJ
    J Appl Toxicol; 2016 Dec; 36(12):1651-1661. PubMed ID: 27241388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of thyroid hormone receptor betaA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action.
    Opitz R; Lutz I; Nguyen NH; Scanlan TS; Kloas W
    Toxicol Appl Pharmacol; 2006 Apr; 212(1):1-13. PubMed ID: 16040072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.