BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 28634124)

  • 1. Cell disruption and lipid extraction for microalgal biorefineries: A review.
    Lee SY; Cho JM; Chang YK; Oh YK
    Bioresour Technol; 2017 Nov; 244(Pt 2):1317-1328. PubMed ID: 28634124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances.
    Oh YK; Kim S; Ilhamsyah DPA; Lee SG; Kim JR
    Bioresour Technol; 2022 Dec; 366():128183. PubMed ID: 36307027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments and key barriers to advanced biofuels: A short review.
    Oh YK; Hwang KR; Kim C; Kim JR; Lee JS
    Bioresour Technol; 2018 Jun; 257():320-333. PubMed ID: 29523378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed.
    de Carvalho JC; Magalhães AI; de Melo Pereira GV; Medeiros ABP; Sydney EB; Rodrigues C; Aulestia DTM; de Souza Vandenberghe LP; Soccol VT; Soccol CR
    Bioresour Technol; 2020 Mar; 300():122719. PubMed ID: 31956056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Bottlenecks and Challenges of the Microalgal Biorefinery.
    Gifuni I; Pollio A; Safi C; Marzocchella A; Olivieri G
    Trends Biotechnol; 2019 Mar; 37(3):242-252. PubMed ID: 30301572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy requirements for wet solvent extraction of lipids from microalgal biomass.
    Martin GJ
    Bioresour Technol; 2016 Apr; 205():40-7. PubMed ID: 26802186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ solvent recovery by using hydrophobic/oleophilic filter during wet lipid extraction from microalgae.
    Kim H; Shin J; Lee D; Im SG; Chang YK
    Bioprocess Biosyst Eng; 2019 Sep; 42(9):1447-1455. PubMed ID: 31076866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels.
    Ha GS; Saha S; Basak B; Kurade MB; Kim GU; Ji MK; Ahn Y; Salama ES; Woong Chang S; Jeon BH
    Bioresour Technol; 2021 Nov; 340():125651. PubMed ID: 34333346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies.
    Rahman MM; Hosano N; Hosano H
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: Current status, challenges and future perspectives.
    Nishshanka GKSH; Liyanaarachchi VC; Premaratne M; Nimarshana PHV; Ariyadasa TU; Kornaros M
    Bioresour Technol; 2021 Dec; 342():126018. PubMed ID: 34571169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process.
    He Y; Wu T; Wang X; Chen B; Chen F
    Bioresour Technol; 2018 Nov; 268():583-591. PubMed ID: 30138870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bead milling disruption kinetics of microalgae: Process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana.
    Zinkoné TR; Gifuni I; Lavenant L; Pruvost J; Marchal L
    Bioresour Technol; 2018 Nov; 267():458-465. PubMed ID: 30036846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: A review.
    Pradhan N; Kumar S; Selvasembian R; Rawat S; Gangwar A; Senthamizh R; Yuen YK; Luo L; Ayothiraman S; Saratale GD; Mal J
    Bioresour Technol; 2023 Feb; 369():128395. PubMed ID: 36442602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
    Yellapu SK; Bharti ; Kaur R; Kumar LR; Tiwari B; Zhang X; Tyagi RD
    Bioresour Technol; 2018 May; 256():515-528. PubMed ID: 29472122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary amine as an efficient CO
    Anto S; Premalatha M; Mathimani T
    Chemosphere; 2022 Feb; 288(Pt 2):132442. PubMed ID: 34606898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.