These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 28634160)

  • 1. High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences.
    Fu BX; Wainberg M; Kundaje A; Fire AZ
    Genetics; 2017 Aug; 206(4):1727-1738. PubMed ID: 28634160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.
    Meeske AJ; Marraffini LA
    Mol Cell; 2018 Sep; 71(5):791-801.e3. PubMed ID: 30122537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers.
    Luo ML; Jackson RN; Denny SR; Tokmina-Lukaszewska M; Maksimchuk KR; Lin W; Bothner B; Wiedenheft B; Beisel CL
    Nucleic Acids Res; 2016 Sep; 44(15):7385-94. PubMed ID: 27174938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.
    Díez-Villaseñor C; Guzmán NM; Almendros C; García-Martínez J; Mojica FJ
    RNA Biol; 2013 May; 10(5):792-802. PubMed ID: 23445770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nucleotide identity in effective CRISPR target escape mutations.
    Künne T; Zhu Y; da Silva F; Konstantinides N; McKenzie RE; Jackson RN; Brouns SJ
    Nucleic Acids Res; 2018 Nov; 46(19):10395-10404. PubMed ID: 30107450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
    Pausch P; Müller-Esparza H; Gleditzsch D; Altegoer F; Randau L; Bange G
    Mol Cell; 2017 Aug; 67(4):622-632.e4. PubMed ID: 28781236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation
    Cooper LA; Stringer AM; Wade JT
    mBio; 2018 Apr; 9(2):. PubMed ID: 29666291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition.
    Westra ER; Semenova E; Datsenko KA; Jackson RN; Wiedenheft B; Severinov K; Brouns SJ
    PLoS Genet; 2013; 9(9):e1003742. PubMed ID: 24039596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR interference and priming varies with individual spacer sequences.
    Xue C; Seetharam AS; Musharova O; Severinov K; Brouns SJ; Severin AJ; Sashital DG
    Nucleic Acids Res; 2015 Dec; 43(22):10831-47. PubMed ID: 26586800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
    Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A
    Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System.
    Bourgeois J; Lazinski DW; Camilli A
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS.
    Majsec K; Bolt EL; Ivančić-Baće I
    BMC Microbiol; 2016 Mar; 16():28. PubMed ID: 26956996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell single-particle tracking photoactivated localization microscopy of Cascade-mediated DNA surveillance.
    Turkowyd B; Müller-Esparza H; Climenti V; Steube N; Endesfelder U; Randau L
    Methods Enzymol; 2019; 616():133-171. PubMed ID: 30691641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation.
    Maikova A; Boudry P; Shiriaeva A; Vasileva A; Boutserin A; Medvedeva S; Semenova E; Severinov K; Soutourina O
    mBio; 2021 Aug; 12(4):e0213621. PubMed ID: 34425703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps.
    Loeff L; Brouns SJJ; Joo C
    Mol Cell; 2018 May; 70(3):385-394.e3. PubMed ID: 29706536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli.
    Beloglazova N; Kuznedelov K; Flick R; Datsenko KA; Brown G; Popovic A; Lemak S; Semenova E; Severinov K; Yakunin AF
    Nucleic Acids Res; 2015 Jan; 43(1):530-43. PubMed ID: 25488810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Visualization of Native CRISPR Target Search in Live Bacteria Reveals Cascade DNA Surveillance Mechanism.
    Vink JNA; Martens KJA; Vlot M; McKenzie RE; Almendros C; Estrada Bonilla B; Brocken DJW; Hohlbein J; Brouns SJJ
    Mol Cell; 2020 Jan; 77(1):39-50.e10. PubMed ID: 31735642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.