BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

873 related articles for article (PubMed ID: 28634270)

  • 41. Valproic acid stimulates myogenesis in pluripotent stem cell-derived mesodermal progenitors in a NOTCH-dependent manner.
    Breuls N; Giarratana N; Yedigaryan L; Garrido GM; Carai P; Heymans S; Ranga A; Deroose C; Sampaolesi M
    Cell Death Dis; 2021 Jul; 12(7):677. PubMed ID: 34226515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm.
    Chan SS; Hagen HR; Swanson SA; Stewart R; Boll KA; Aho J; Thomson JA; Kyba M
    Stem Cell Reports; 2016 Jan; 6(1):26-34. PubMed ID: 26771351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells.
    Ciemerych MA; Archacka K; Grabowska I; Przewoźniak M
    Results Probl Cell Differ; 2011; 53():473-527. PubMed ID: 21630157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner.
    Takegahara Y; Yamanouchi K; Nakamura K; Nakano S; Nishihara M
    Exp Cell Res; 2014 May; 324(1):105-14. PubMed ID: 24720912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Five transcriptional factors reprogram fibroblast into myogenic lineage cells via paraxial mesoderm stage.
    Hwang M; Lee EJ; Chung MJ; Park S; Jeong KS
    Cell Cycle; 2020 Jul; 19(14):1804-1816. PubMed ID: 32579865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of Skeletal Muscle Endocrine Control in an In Vitro Model of Myogenesis.
    Romagnoli C; Zonefrati R; Sharma P; Innocenti M; Cianferotti L; Brandi ML
    Calcif Tissue Int; 2020 Jul; 107(1):18-30. PubMed ID: 32107602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.
    Albini S; Coutinho P; Malecova B; Giordani L; Savchenko A; Forcales SV; Puri PL
    Cell Rep; 2013 Mar; 3(3):661-70. PubMed ID: 23478022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors.
    Choi IY; Lim H; Cho HJ; Oh Y; Chou BK; Bai H; Cheng L; Kim YJ; Hyun S; Kim H; Shin JH; Lee G
    Elife; 2020 Feb; 9():. PubMed ID: 32011235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deconstruction of DNA methylation patterns during myogenesis reveals specific epigenetic events in the establishment of the skeletal muscle lineage.
    Carrió E; Díez-Villanueva A; Lois S; Mallona I; Cases I; Forn M; Peinado MA; Suelves M
    Stem Cells; 2015 Jun; 33(6):2025-36. PubMed ID: 25801824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation and function of skeletal muscle stem cells.
    Cerletti M; Shadrach JL; Jurga S; Sherwood R; Wagers AJ
    Cold Spring Harb Symp Quant Biol; 2008; 73():317-22. PubMed ID: 19204065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering human pluripotent stem cells into a functional skeletal muscle tissue.
    Rao L; Qian Y; Khodabukus A; Ribar T; Bursac N
    Nat Commun; 2018 Jan; 9(1):126. PubMed ID: 29317646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture.
    Csete M; Walikonis J; Slawny N; Wei Y; Korsnes S; Doyle JC; Wold B
    J Cell Physiol; 2001 Nov; 189(2):189-96. PubMed ID: 11598904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.
    Chal J; Oginuma M; Al Tanoury Z; Gobert B; Sumara O; Hick A; Bousson F; Zidouni Y; Mursch C; Moncuquet P; Tassy O; Vincent S; Miyanari A; Bera A; Garnier JM; Guevara G; Hestin M; Kennedy L; Hayashi S; Drayton B; Cherrier T; Gayraud-Morel B; Gussoni E; Relaix F; Tajbakhsh S; Pourquié O
    Nat Biotechnol; 2015 Sep; 33(9):962-9. PubMed ID: 26237517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells.
    Shelton M; Metz J; Liu J; Carpenedo RL; Demers SP; Stanford WL; Skerjanc IS
    Stem Cell Reports; 2014 Sep; 3(3):516-29. PubMed ID: 25241748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forming a multinucleated cell: molecules that regulate myoblast fusion.
    Horsley V; Pavlath GK
    Cells Tissues Organs; 2004; 176(1-3):67-78. PubMed ID: 14745236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Development of an artificial microenvironment to maintain the quiescence and the therapeutic potential of skeletal muscle stem cells].
    Boutet SC; Quarta M
    Med Sci (Paris); 2017 Mar; 33(3):341-344. PubMed ID: 28367823
    [No Abstract]   [Full Text] [Related]  

  • 57. Halves of epithelial somites and segmental plate show distinct muscle differentiation behavior in vitro compared to entire somites and segmental plate.
    Gamel AJ; Brand-Saberi B; Christ B
    Dev Biol; 1995 Dec; 172(2):625-39. PubMed ID: 8612977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells.
    Kindler U; Zaehres H; Mavrommatis L
    Bio Protoc; 2024 May; 14(9):e4984. PubMed ID: 38737507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of muscle plasticity and trophism by fatty acids: A short review.
    Abreu P; Leal-Cardoso JH; Ceccatto VM; Hirabara SM
    Rev Assoc Med Bras (1992); 2017 Feb; 63(2):148-155. PubMed ID: 28355376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Skeletal myogenesis by human embryonic stem cells.
    Zheng JK; Wang Y; Karandikar A; Wang Q; Gai H; Liu AL; Peng C; Sheng HZ
    Cell Res; 2006 Aug; 16(8):713-22. PubMed ID: 16788572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.