BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

777 related articles for article (PubMed ID: 28634270)

  • 61. Generation of craniofacial myogenic progenitor cells from human induced pluripotent stem cells for skeletal muscle tissue regeneration.
    Kim E; Wu F; Wu X; Choo HJ
    Biomaterials; 2020 Jul; 248():119995. PubMed ID: 32283390
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sphere-Based Expansion of Myogenic Progenitors from Human Pluripotent Stem Cells.
    Reilly M; Robertson S; Suzuki M
    Methods Mol Biol; 2023; 2640():159-174. PubMed ID: 36995594
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Path from Pluripotency to Skeletal Muscle: Developmental Myogenesis Guides the Way.
    Hicks M; Pyle A
    Cell Stem Cell; 2015 Sep; 17(3):255-7. PubMed ID: 26340524
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Keep Your Friends Close: Cell-Cell Contact and Skeletal Myogenesis.
    Krauss RS; Joseph GA; Goel AJ
    Cold Spring Harb Perspect Biol; 2017 Feb; 9(2):. PubMed ID: 28062562
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Wnt Signaling in Skeletal Muscle Development and Regeneration.
    Girardi F; Le Grand F
    Prog Mol Biol Transl Sci; 2018 Jan; 153():157-179. PubMed ID: 29389515
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects.
    Vepkhvadze TF; Vorotnikov AV; Popov DV
    Biochemistry (Mosc); 2021 May; 86(5):597-610. PubMed ID: 33993862
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Critical Windows for the Programming Effects of Early-Life Nutrition on Skeletal Muscle Mass.
    Fiorotto ML; Davis TA
    Nestle Nutr Inst Workshop Ser; 2018; 89():25-35. PubMed ID: 29991029
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Anterior trunk muscle shows mix of axial and appendicular developmental patterns.
    Sagarin KA; Redgrave AC; Mosimann C; Burke AC; Devoto SH
    Dev Dyn; 2019 Oct; 248(10):961-968. PubMed ID: 31386244
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity.
    Costamagna D; Quattrocelli M; Duelen R; Sahakyan V; Perini I; Palazzolo G; Sampaolesi M
    Cell Mol Life Sci; 2014 Feb; 71(4):615-27. PubMed ID: 23949444
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells.
    Baik J; Ortiz-Cordero C; Magli A; Azzag K; Crist SB; Yamashita A; Kiley J; Selvaraj S; Mondragon-Gonzalez R; Perrin E; Maufort JP; Janecek JL; Lee RM; Stone LH; Rangarajan P; Ramachandran S; Graham ML; Perlingeiro RCR
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190056
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Single-cell RNA sequencing in skeletal muscle developmental biology.
    Cai C; Yue Y; Yue B
    Biomed Pharmacother; 2023 Jun; 162():114631. PubMed ID: 37003036
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A mathematical model of skeletal muscle regeneration with upper body vibration.
    Jones G; Smallwood C; Ruchti T; Blotter J; Feland B
    Math Biosci; 2020 Sep; 327():108424. PubMed ID: 32681914
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA.
    Kim J; Oliveira VKP; Yamamoto A; Perlingeiro RCR
    Stem Cell Res; 2017 Aug; 23():87-94. PubMed ID: 28732241
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In Vitro Generation of Somite Derivatives from Human Induced Pluripotent Stem Cells.
    Nakajima T; Sakurai H; Ikeya M
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081810
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of pluripotent stem cell-based human tenocytes.
    Nakajima T; Ikeya M
    Dev Growth Differ; 2021 Jan; 63(1):38-46. PubMed ID: 33270251
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single cell dynamics of embryonic muscle progenitor cells in zebrafish.
    Sharma P; Ruel TD; Kocha KM; Liao S; Huang P
    Development; 2019 Jul; 146(14):. PubMed ID: 31253635
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells.
    Baci D; Chirivì M; Pace V; Maiullari F; Milan M; Rampin A; Somma P; Presutti D; Garavelli S; Bruno A; Cannata S; Lanzuolo C; Gargioli C; Rizzi R; Bearzi C
    Cells; 2020 Jun; 9(6):. PubMed ID: 32585911
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generation of PAX7 Reporter Cells to Investigate Skeletal Myogenesis from Human Pluripotent Stem Cells.
    Xi H; Young CS; Pyle AD
    STAR Protoc; 2020 Dec; 1(3):100158. PubMed ID: 33377052
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-coding RNAs in muscle differentiation and musculoskeletal disease.
    Ballarino M; Morlando M; Fatica A; Bozzoni I
    J Clin Invest; 2016 Jun; 126(6):2021-30. PubMed ID: 27249675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives.
    Rescan PY
    Differentiation; 2019; 106():35-41. PubMed ID: 30852471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.