BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28634300)

  • 1. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
    Marin-Gonzalez A; Vilhena JG; Perez R; Moreno-Herrero F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7049-7054. PubMed ID: 28634300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
    Liebl K; Drsata T; Lankas F; Lipfert J; Zacharias M
    Nucleic Acids Res; 2015 Dec; 43(21):10143-56. PubMed ID: 26464435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements.
    Aggarwal A; Bag S; Maiti PK
    Phys Chem Chem Phys; 2018 Nov; 20(45):28920-28928. PubMed ID: 30422138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
    Lipfert J; Skinner GM; Keegstra JM; Hensgens T; Jager T; Dulin D; Köber M; Yu Z; Donkers SP; Chou FC; Das R; Dekker NH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15408-13. PubMed ID: 25313077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind predictions of DNA and RNA tweezers experiments with force and torque.
    Chou FC; Lipfert J; Das R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003756. PubMed ID: 25102226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale structures and mechanics of peptide nucleic acids.
    Chhetri KB; Sharma A; Naskar S; Maiti PK
    Nanoscale; 2022 May; 14(17):6620-6635. PubMed ID: 35421892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-dependent mechanical properties of double-stranded RNA.
    Marin-Gonzalez A; Vilhena JG; Moreno-Herrero F; Perez R
    Nanoscale; 2019 Nov; 11(44):21471-21478. PubMed ID: 31686065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study.
    Zhang Y; He L; Li S
    J Chem Phys; 2023 Mar; 158(9):094902. PubMed ID: 36889965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling.
    Liu JH; Xi K; Zhang X; Bao L; Zhang X; Tan ZJ
    Biophys J; 2019 Jul; 117(1):74-86. PubMed ID: 31164196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-dependent elasticity of nucleic acids.
    Luengo-Márquez J; Zalvide-Pombo J; Pérez R; Assenza S
    Nanoscale; 2023 Apr; 15(14):6738-6744. PubMed ID: 36942727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-stranded RNA bending by AU-tract sequences.
    Marin-Gonzalez A; Aicart-Ramos C; Marin-Baquero M; Martín-González A; Suomalainen M; Kannan A; Vilhena JG; Greber UF; Moreno-Herrero F; Pérez R
    Nucleic Acids Res; 2020 Dec; 48(22):12917-12928. PubMed ID: 33245767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained modelling of supercoiled RNA.
    Matek C; Šulc P; Randisi F; Doye JP; Louis AA
    J Chem Phys; 2015 Dec; 143(24):243122. PubMed ID: 26723607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis for Elastic Mechanical Properties of the DNA Double Helix.
    Kim YJ; Kim DN
    PLoS One; 2016; 11(4):e0153228. PubMed ID: 27055239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level.
    Herrero-Galán E; Fuentes-Perez ME; Carrasco C; Valpuesta JM; Carrascosa JL; Moreno-Herrero F; Arias-Gonzalez JR
    J Am Chem Soc; 2013 Jan; 135(1):122-31. PubMed ID: 23214411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical transition in a highly stretched and torsionally constrained DNA.
    Strzelecki J; Peplowski L; Lenartowski R; Nowak W; Balter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020701. PubMed ID: 25353406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA.
    Nomidis SK; Kriegel F; Vanderlinden W; Lipfert J; Carlon E
    Phys Rev Lett; 2017 May; 118(21):217801. PubMed ID: 28598642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations.
    Dohnalová H; Seifert M; Matoušková E; Klein M; Papini FS; Lipfert J; Dulin D; Lankaš F
    J Phys Chem B; 2024 Jan; 128(3):664-675. PubMed ID: 38197365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overstretching Double-Stranded RNA, Double-Stranded DNA, and RNA-DNA Duplexes.
    Melkonyan L; Bercy M; Bizebard T; Bockelmann U
    Biophys J; 2019 Aug; 117(3):509-519. PubMed ID: 31337545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality in RNA and DNA deformations induced by salt, temperature change, stretching force, and protein binding.
    Tian FJ; Zhang C; Zhou E; Dong HL; Tan ZJ; Zhang XH; Dai L
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2218425120. PubMed ID: 37155848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.