BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28634747)

  • 21. Household epidemics: modelling effects of early stage vaccination.
    Shaban N; Andersson M; Svensson A; Britton T
    Biom J; 2009 Jun; 51(3):408-19. PubMed ID: 19548285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong spatial embedding of social networks generates nonstandard epidemic dynamics independent of degree distribution and clustering.
    Haw DJ; Pung R; Read JM; Riley S
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23636-23642. PubMed ID: 32900923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring Infection Transmission in a Stochastic SIV Model with Infection Reintroduction and Imperfect Vaccine.
    Gamboa M; Lopez-Herrero MJ
    Acta Biotheor; 2020 Dec; 68(4):395-420. PubMed ID: 31916048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis.
    Ajelli M; Merler S; Fumanelli L; Pastore Y Piontti A; Dean NE; Longini IM; Halloran ME; Vespignani A
    BMC Med; 2016 Sep; 14(1):130. PubMed ID: 27600737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of emerging infectious diseases using responsive imperfect vaccination and isolation.
    Ball FG; Knock ES; O'Neill PD
    Math Biosci; 2008 Nov; 216(1):100-13. PubMed ID: 18789951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vaccination Control in a Stochastic SVIR Epidemic Model.
    Witbooi PJ; Muller GE; Van Schalkwyk GJ
    Comput Math Methods Med; 2015; 2015():271654. PubMed ID: 26089961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective degree household network disease model.
    Ma J; van den Driessche P; Willeboordse FH
    J Math Biol; 2013 Jan; 66(1-2):75-94. PubMed ID: 22252505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Random migration processes between two stochastic epidemic centers.
    Sazonov I; Kelbert M; Gravenor MB
    Math Biosci; 2016 Apr; 274():45-57. PubMed ID: 26877075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels.
    Chowell G; Tariq A; Kiskowski M
    PLoS Negl Trop Dis; 2019 Nov; 13(11):e0007814. PubMed ID: 31751337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-bond percolation model of epidemic spreading with vaccination in complex networks.
    Li S; Zhao X; Zhang R
    J Math Biol; 2022 Oct; 85(5):49. PubMed ID: 36222889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic epidemic models featuring contact tracing with delays.
    Ball FG; Knock ES; O'Neill PD
    Math Biosci; 2015 Aug; 266():23-35. PubMed ID: 26037511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination.
    Alvarez-Zuzek LG; La Rocca CE; Iglesias JR; Braunstein LA
    PLoS One; 2017; 12(11):e0186492. PubMed ID: 29121056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of stochastic epidemics on heterogeneous networks.
    Graham M; House T
    J Math Biol; 2014 Jun; 68(7):1583-605. PubMed ID: 23633042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of household distribution on transmission and control of highly infectious diseases.
    Becker NG; Dietz K
    Math Biosci; 1995 Jun; 127(2):207-19. PubMed ID: 7795319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.
    Volz EM; Miller JC; Galvani A; Ancel Meyers L
    PLoS Comput Biol; 2011 Jun; 7(6):e1002042. PubMed ID: 21673864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of household structure on disease-induced herd immunity.
    Ball F; Critcher L; Neal P; Sirl D
    J Math Biol; 2023 Nov; 87(6):83. PubMed ID: 37938449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
    Kenah E; Robins JM
    J Theor Biol; 2007 Dec; 249(4):706-22. PubMed ID: 17950362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.