These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 28634804)
1. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Mejri S; Siah A; Coutte F; Magnin-Robert M; Randoux B; Tisserant B; Krier F; Jacques P; Reignault P; Halama P Environ Sci Pollut Res Int; 2018 Oct; 25(30):29822-29833. PubMed ID: 28634804 [TBL] [Abstract][Full Text] [Related]
2. Lipopeptide culture filtrates from Bacillus spp. provide effective protection to wheat against the foliar pathogen Zymoseptoria tritici. El Arbi A; Arnauld S; Chataigné G; Lecouturier D; Bricout A; Gharsallah N; Jacques P; Siah A; Rochex A J Appl Microbiol; 2024 Jan; 135(1):. PubMed ID: 38115638 [TBL] [Abstract][Full Text] [Related]
3. Induction of resistance in wheat by bacterial cyclic lipopeptides. Khong NG; Randoux B; Deravel J; Tisserant B; Tayeh Ch; Coutte F; Bourdon N; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2013; 78(3):479-87. PubMed ID: 25151823 [TBL] [Abstract][Full Text] [Related]
4. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici. Zhang X; Chen X; Qiao X; Fan X; Huo X; Zhang D J Sep Sci; 2021 Feb; 44(4):931-940. PubMed ID: 33326164 [TBL] [Abstract][Full Text] [Related]
5. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Raouani NEH; Claverie E; Randoux B; Chaveriat L; Yaseen Y; Yada B; Martin P; Cabrera JC; Jacques P; Reignault P; Magnin-Robert M; Lounès-Hadj Sahraoui A Molecules; 2022 Oct; 27(19):. PubMed ID: 36235207 [TBL] [Abstract][Full Text] [Related]
6. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Mihalache G; Balaes T; Gostin I; Stefan M; Coutte F; Krier F Environ Sci Pollut Res Int; 2018 Oct; 25(30):29784-29793. PubMed ID: 28528498 [TBL] [Abstract][Full Text] [Related]
7. Two Novel Allioui N; Driss F; Dhouib H; Jlail L; Tounsi S; Frikha-Gargouri O Biomed Res Int; 2021; 2021():6611657. PubMed ID: 34195272 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici. Sahli R; Rivière C; Siah A; Smaoui A; Samaillie J; Hennebelle T; Roumy V; Ksouri R; Halama P; Sahpaz S Environ Sci Pollut Res Int; 2018 Oct; 25(30):29775-29783. PubMed ID: 28484977 [TBL] [Abstract][Full Text] [Related]
9. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Fan H; Ru J; Zhang Y; Wang Q; Li Y Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713 [TBL] [Abstract][Full Text] [Related]
10. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Sarwar A; Hassan MN; Imran M; Iqbal M; Majeed S; Brader G; Sessitsch A; Hafeez FY Microbiol Res; 2018 Apr; 209():1-13. PubMed ID: 29580617 [TBL] [Abstract][Full Text] [Related]
12. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203 [TBL] [Abstract][Full Text] [Related]
13. Induction of resistance in wheat against powdery mildew by bacterial cyclic lipopeptides. Khong NG; Randoux B; Tayeh Ch; Coutte F; Bourdon N; Tisserant B; Laruelle F; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2012; 77(3):39-51. PubMed ID: 23878959 [TBL] [Abstract][Full Text] [Related]
14. Saccharin Provides Protection and Activates Defense Mechanisms in Wheat Against the Hemibiotrophic Pathogen Mejri S; Magnin-Robert M; Randoux B; Ghinet A; Halama P; Siah A; Reignault P Plant Dis; 2021 Apr; 105(4):780-786. PubMed ID: 32830594 [TBL] [Abstract][Full Text] [Related]
15. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
16. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Farace G; Fernandez O; Jacquens L; Coutte F; Krier F; Jacques P; Clément C; Barka EA; Jacquard C; Dorey S Mol Plant Pathol; 2015 Feb; 16(2):177-87. PubMed ID: 25040001 [TBL] [Abstract][Full Text] [Related]
17. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Zeriouh H; de Vicente A; Pérez-García A; Romero D Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294 [TBL] [Abstract][Full Text] [Related]
18. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Zhang L; Sun C Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550 [TBL] [Abstract][Full Text] [Related]
19. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
20. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5. DeFilippi S; Groulx E; Megalla M; Mohamed R; Avis TJ J Chem Ecol; 2018 Apr; 44(4):374-383. PubMed ID: 29492723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]