BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 28634851)

  • 1. Multi-step biocatalytic depolymerization of lignin.
    Picart P; Liu H; Grande PM; Anders N; Zhu L; Klankermayer J; Leitner W; Domínguez de María P; Schwaneberg U; Schallmey A
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6277-6287. PubMed ID: 28634851
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gall DL; Kontur WS; Lan W; Kim H; Li Y; Ralph J; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.
    Picart P; de María PD; Schallmey A
    Front Microbiol; 2015; 6():916. PubMed ID: 26388858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.
    Husarcíková J; Voß H; Domínguez de María P; Schallmey A
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5391-5401. PubMed ID: 29728724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Database Mining for Novel Bacterial β-Etherases, Glutathione-Dependent Lignin-Degrading Enzymes.
    Voß H; Heck CA; Schallmey M; Schallmey A
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.
    Picart P; Müller C; Mottweiler J; Wiermans L; Bolm C; Domínguez de María P; Schallmey A
    ChemSusChem; 2014 Nov; 7(11):3164-71. PubMed ID: 25186983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.
    Gasser CA; Čvančarová M; Ammann EM; Schäffer A; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2575-2588. PubMed ID: 27904924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Cleavage of Lignin β-
    Marinović M; Nousiainen P; Dilokpimol A; Kontro J; Moore R; Sipilä J; de Vries RP; Mäkelä MR; Hildén K
    ACS Sustain Chem Eng; 2018 Mar; 6(3):2878-2882. PubMed ID: 30271687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin.
    Lancefield CS; Ojo OS; Tran F; Westwood NJ
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):258-62. PubMed ID: 25377996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-degrading enzymes.
    Pollegioni L; Tonin F; Rosini E
    FEBS J; 2015 Apr; 282(7):1190-213. PubMed ID: 25649492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF.
    Wang C; Ouyang X; Su S; Liang X; Zhang C; Wang W; Yuan Q; Li Q
    Enzyme Microb Technol; 2016 Nov; 93-94():59-69. PubMed ID: 27702486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin.
    Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Laccase-Lig Multienzymatic Multistep System in Lignin Valorization.
    Vignali E; Gigli M; Cailotto S; Pollegioni L; Rosini E; Crestini C
    ChemSusChem; 2022 Oct; 15(20):e202201147. PubMed ID: 35917230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers.
    Gall DL; Ralph J; Donohue TJ; Noguera DR
    Environ Sci Technol; 2014 Oct; 48(20):12454-63. PubMed ID: 25232892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Syringyl Mediators Accelerate Laccase-Catalyzed β-O-4 Cleavage and Cα-Oxidation of a Guaiacyl Model Substrate via an Aggregation Mechanism.
    Chen X; Ouyang X; Li J; Zhao YL
    ACS Omega; 2021 Sep; 6(35):22578-22588. PubMed ID: 34514230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics.
    Cajnko MM; Oblak J; Grilc M; Likozar B
    Bioresour Technol; 2021 Nov; 340():125655. PubMed ID: 34388661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.