These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 28634867)
1. A risk assessment study of water quality, biota, and legacy sediment prior to small dam removal in a tributary to the Delaware River. Rothenberger MB; Hoyt V; Germanoski D; Conlon M; Wilson J; Hitchings J Environ Monit Assess; 2017 Jul; 189(7):344. PubMed ID: 28634867 [TBL] [Abstract][Full Text] [Related]
2. Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Bere T; Dalu T; Mwedzi T Sci Total Environ; 2016 Dec; 572():147-156. PubMed ID: 27494661 [TBL] [Abstract][Full Text] [Related]
3. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Smolders AJ; Lock RA; Van der Velde G; Medina Hoyos RI; Roelofs JG Arch Environ Contam Toxicol; 2003 Apr; 44(3):314-23. PubMed ID: 12712290 [TBL] [Abstract][Full Text] [Related]
4. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA). Angelo RT; Cringan MS; Chamberlain DL; Stahl AJ; Haslouer SG; Goodrich CA Sci Total Environ; 2007 Oct; 384(1-3):467-96. PubMed ID: 17669474 [TBL] [Abstract][Full Text] [Related]
5. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524 [TBL] [Abstract][Full Text] [Related]
6. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland]. Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663 [TBL] [Abstract][Full Text] [Related]
7. Impacts and pathways of mine contaminants to bull trout (Salvelinus confluentus) in an Idaho watershed. Kiser T; Hansen J; Kennedy B Arch Environ Contam Toxicol; 2010 Aug; 59(2):301-11. PubMed ID: 20101401 [TBL] [Abstract][Full Text] [Related]
8. Biomonitoring in the Boulder River Watershed, Montana, USA: metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage. Rhea DT; Harper DD; Farag AM; Brumbaugh WG Environ Monit Assess; 2006 Apr; 115(1-3):381-93. PubMed ID: 16648955 [TBL] [Abstract][Full Text] [Related]
9. Spatial distribution of heavy metal accumulation in the sediments after dam construction. Shim MJ; Yang YM; Oh DY; Lee SH; Yoon YY Environ Monit Assess; 2015 Dec; 187(12):733. PubMed ID: 26549487 [TBL] [Abstract][Full Text] [Related]
10. Screening Level Assessment of Metal Concentrations in Streambed Sediments and Floodplain Soils within the Grand Lake Watershed in Northeastern Oklahoma, USA. Garvin EM; Bridge CF; Garvin MS Arch Environ Contam Toxicol; 2017 Apr; 72(3):349-363. PubMed ID: 28229194 [TBL] [Abstract][Full Text] [Related]
11. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams. Colas F; Archaimbault V; Devin S Sci Total Environ; 2011 Mar; 409(7):1336-43. PubMed ID: 21272919 [TBL] [Abstract][Full Text] [Related]
12. Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution. Davis RP; Sullivan SMP; Stefanik KC Environ Pollut; 2017 Dec; 231(Pt 1):671-680. PubMed ID: 28850935 [TBL] [Abstract][Full Text] [Related]
13. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas. Baeza M; Ren J; Krishnamurthy S; Vaughan TC Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573 [TBL] [Abstract][Full Text] [Related]
14. Dams in the Cadillac Desert: downstream effects in a geomorphic context. Sabo JL; Bestgen K; Graf W; Sinha T; Wohl EE Ann N Y Acad Sci; 2012 Feb; 1249():227-46. PubMed ID: 22329918 [TBL] [Abstract][Full Text] [Related]
15. [Application of equilibrium partitioning approach to establish sediment quality criteria for heavy metals in Hengyang section of Xiangjiang River]. Han CN; Qin YW; Zheng BH; Zhang L; Cao W Huan Jing Ke Xue; 2013 May; 34(5):1715-24. PubMed ID: 23914520 [TBL] [Abstract][Full Text] [Related]
16. Impact of metals on macroinvertebrate assemblages in the Forgotten Stretch of the Rio Grande. Ordonez C; Lougheed VL; Gardea-Torresdey JL; Bain LJ Arch Environ Contam Toxicol; 2011 Apr; 60(3):426-36. PubMed ID: 20563799 [TBL] [Abstract][Full Text] [Related]
17. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident. Zhao XM; Yao LA; Ma QL; Zhou GJ; Wang L; Fang QL; Xu ZC Chemosphere; 2018 Mar; 194():107-116. PubMed ID: 29197813 [TBL] [Abstract][Full Text] [Related]
18. Sediment contamination in Lyons Creek East, a tributary of the Niagara River: part I. Assessment of benthic macroinvertebrates. Milani D; Grapentine LC; Fletcher R Arch Environ Contam Toxicol; 2013 Jan; 64(1):65-86. PubMed ID: 23070569 [TBL] [Abstract][Full Text] [Related]
19. Assessment of metal pollution in the Lambro Creek (Italy). Gurung B; Race M; Fabbricino M; KomĂnková D; Libralato G; Siciliano A; Guida M Ecotoxicol Environ Saf; 2018 Feb; 148():754-762. PubMed ID: 29182985 [TBL] [Abstract][Full Text] [Related]
20. An integrated assessment of sediment remediation in a midwestern U.S. stream using sediment chemistry, water quality, bioassessment, and fish biomarkers. Meier JR; Snyder S; Sigler V; Altfater D; Gray M; Batin B; Baumann P; Gordon D; Wernsing P; Lazorchak J Environ Toxicol Chem; 2013 Mar; 32(3):653-61. PubMed ID: 23233343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]